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Question Answering (QA) on Knowledge Base

Large-scale knowledge graphs
• Properties of billions of entities
• Plus relations among them

An QA Example:

Question: what is Obama’s citizenship?
• Query parsing: 

(Obama, Citizenship,?)
• Identify and infer over relevant subgraphs:

(Obama, BornIn, Hawaii)
(Hawaii, PartOf, USA)

• correlating semantically relevant relations:
BornIn ~ Citizenship

Answer: USA
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Symbolic approaches to QA: production system 
https://en.wikipedia.org/wiki/Production_system_(computer_science)

• Production rules
• condition—action pairs
• Represent (world) knowledge as a graph

• Working memory
• Contains a description of the current state of the world in a reasoning process

• Recognizer-act controller
• Update working memory by searching and firing a production rule

• A case study: MSR MindNet [Dolan+ 93; Richardson+ 98]
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Case study of Question Answering with MindNet

• Build a MindNet graph from:
• Text of dictionaries
• Target corpus, e.g. an encyclopedia (Encarta 98)

• Build a dependency graph from query
• Model QA as a graph matching procedure

• Heuristic fuzzy matching for synonyms, named entities, wh-words, etc.
• Some common sense reasoning (e.g. dates, math)

• Generate answer string from matched subgraph
• Including well-formed answers that didn’t occur in original corpus
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MindNet

6



Fuzzy Match against MindNet

American actor John Wilkes Booth, who 
was a violent backer of the South during 
the Civil War, shot Abraham Lincoln at 
Ford's Theater in Washington, D.C., on 
April 14, 1865. 

Lincoln, Abraham
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Input LF:

Who assassinated Abraham Lincoln?



Generate output string

“John Wilkes Booth shot Abraham Lincoln”
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Worked beautifully!
• Just not very often…
• What went wrong?

• One major reason: paraphrase alternations
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• The Mississippi River is 3,734 km (2,320 mi) long.

• …is nearly 86 km long…

• ...is a short river, some 4.5 miles (7.2 km) in length

• The total length of the river is 2,145 kilometres (1,333 mi).

• … at the estimated length of 5,464 km (3,395 mi)…

• …is a 25-mile (40 km) tributary of …

• … has a meander length of 444 miles (715 km)…

• … Bali’s longest river, measuring approximately 75 kilometers from source to mouth.

• The … mainstem is 2.75 miles (4.43 km) long although total distance from 
headwater source tributaries to the sea is 14 miles (23 km).

“How long is the X river?”



Symbolic Space 

- Knowledge Representation
- Explicitly store a BIG but incomplete 

knowledge graph (KG) 
- Words, relations, templates
- High-dim, discrete, sparse vectors

- Inference
- Slow on a big KG w. millions of paths
- Keyword/template matching is sensitive to 

paraphrase alternations 
- Human comprehensible but not computationally 

efficient

Neural Space

- Knowledge Representation
- Implicitly store entities and structure of KG in a 

compact way that is more generalizable
- Semantic concepts/classes
- Low-dim, cont., dense vectors shaped by KG

- Inference
- Fast on compact memory
- Semantic matching is robust to paraphrase 

alternations
- Computationally efficient but not human 

comprehensible yet
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ReasoNet with Shared Memory

• Input/output modules are task-specific
• Shared memory encodes task-specific 

knowledge
• Working memory (hidden state 𝑺𝑺𝒕𝒕) Contains a 

description of the current state of the world in a 
reasoning process

• Search controller performs multi-step inference 
to update 𝑆𝑆𝑡𝑡 of a question using knowledge in 
shared memory

• Shared memory and search controller are jointly 
learned

[Shen+ 16a] 11
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Training samples from KG:
(Obama, BornIn, Hawaii)
(Hawaii, PartOf, USA)
…
(h, r, t)

…
(Obama, Citizenship,?)->(USA)

(Obama, Citizenship, ?)

(USA)

Embed KG to memory vectors 

Joint learning of Shared Memory and Search Controller 
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Training samples from KG:
(Obama, BornIn, Hawaii)
(Hawaii, PartOf, USA)
…
(h, r, t)

…
(Obama, Citizenship,?)->(USA)

(Obama, Citizenship, ?)

Joint learning of Shared Memory and Search Controller 

13

Citizenship

BornIn

(USA)



Symbolic

Neural



ReasoNet (Shen+ 16a)

The Knowledge Base Question Answering Results on WN18 and FB15K 
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Shared Memory: long-term memory to store learned 
knowledge, like human brain
• Knowledge is learned via performing tasks, e.g., update memory to answer new questions 
• New knowledge is implicitly stored in memory cells via gradient update
• Semantically relevant relations/entities can be compactly represented using similar vectors.
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Visualization of Reasoning in MRC Models
 Translate Natural Language to Image
Multi-step Image Editing via Dialogue

“A white sofa by 
the green wall”

“There is a blue vase 
by the foot of the 
sofa”

“A living room”



Dialogue 

• What kinds of Problems? 
• Deep RL for dialogues
• Three case studies 



Aspirational Goal:
Enterprise Assistant

Where are sales lagging behind our 
forecast?

The worst region is [country], where sales 
are XX% below projections

Do you know why?

The forecast for [product] growth was 
overly optimistic

How can we turn this around?

Here are the 10 customers in [country] 
with the most growth potential, per our 

CRM model

Can you set up a meeting with the CTO of 
[company]?

Yes, I’ve set up a meeting with [person 
name] for next month when you’re in 

[location]

Decision Support

Task Completion

Info Consumption

Task Completion Thanks 19



Three types of dialogue systems

• Social bot (not to be discussed today)
• Microsoft XiaoIce, 
• MSR Data-Driven Conversation

• Task-completion bot
• Movie ticket booking
• Hotels booking 
• Travel assistant

• Info bot
• Find the closest Starbucks with drive-thru
• Find a family-friendly movie directed by Andrew Stanton 

near Redmond for upcoming weekend afternoons

Goal-oriented
(slot-filling) 
dialogues
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MSR’s neural conversation engine 
Neural model learns the general shape of conversation, and 
the system output is situationally appropriate and 
coherent…

H: hi
M: how are you ?
H: not bad
M: what 's wrong ?
H: nothing really
M: wan na talk about it ? i 'm here if you wan na talk x
H: well , i 'm just tired
M: me too , i 'm here if you wan na talk
H: thanks , what are you doing ?
M: you 're welcome and i 'm watching tv and you ?
H: on netflix ?
M: yeah , i 'm watching it on netflix .
H: what are you watching ?
M: a tv show .
H: nice , did you have dinner already ?
M: no , not yet . what about you ?

A more goal-oriented example. No grounding into a real calendar, 
but the “shape” of the conversation is fluent and plausible…

H: would thursday afternoon work sometime ?
M: yeah , sure . just let me know when you ‘re free .
H: after lunch is probably the best time
M: okay , sounds good . just let me know when you ‘re free .
H: would 2 pm work for you ?
M: works for me .
H: well let ‘s say 2 pm then i ‘ll see you there
M: sounds good . 

- Generating responses vs. retrieving responses
- Easy to incorporate contextual info via embedding

- User profile – personalized conversation 
- knowledge bases – grounded conversation

- The engine is E2E learned from conversation experience 
- Learning a goal-oriented conversation engine via RL

- Ongoing: knowledge-grounded dialogue

[Sordoni+ 15; Li+ 16a]
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Conversation in the real world
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Because of your game? EOS Yeah I’m …

• conversation history
• persona
• user data 

(bio, social graph, etc.)
• visual signal 

(camera, picture etc.)
• knowledge base
• mood
• geolocation
• time



Image-grounded dialogue 

Output of a neural conversation model trained on 250K Twitter conversations sparked by a tweeted photo

[Mostafazadeh+ 17]

Neural approaches allow language models to be grounded in the world, i.e., link language to real-world signals 
such as images, machine state, sensor data from biomedical devices.
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An example dialogue of MovieBot

Source code available on https://github.com/MiuLab/TC-Bot

Some of our dialogues can be more complex:
• Natural language understanding errors
 reason under uncertainty

• Constraint violation
 revise information collected earlier
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Slot-filling dialogues

• Slot: information to be filled in before completing a task
o For movie-bot: movie-name, theater, number-of-tickets, price, …

• Dialog act (intent)
o Inspired by speech act theory (communication as action)

request, confirm, inform, thank-you, …
o Some may take parameters:

request(price)
confirm(moviename=“kungfu panda”)
inform(price=$10)
thank-you()
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Multi-turn (goal-oriented) dialogue

(Spoken) Language 
Understanding State Tracking

Dialog PolicyNatural Language 
Generation / Synthesis

“Find me a
Bill Murray movie”

Request(movie;
actor=bill murray)

Dialog Manager

Request
(release_year)

“When was it
released”

Knowledge Base

26



Conversation as RL
• Observation / Action

oRaw utterance (natural language form)
o Semantic representation (dialog-acts)

• Reward
o+10 upon termination if succeeded
o−10 upon termination if failed
o−1 per turn

• State
o Explicitly defined (POMDP-based, …)
o Implicitly defined (RNNs)semanticraw

Earlier examples: [Levin+ 00; Singh+ 02; Williams & Young 07]
27



A user simulator for RL and evaluation

• Robustness: automatic action 
selection based on uncertainty 
by RL

• Flexibility: allow user-initiated 
behaviors

• Reproducibility: a R&D setting 
that allows consistent 
comparisons of competing 
methods 

[Li+ 17] https://github.com/MiuLab/TC-Bot 28
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Three case studies

• Info bot: end-to-end training with non-differentiable knowledge base 
[Dhuwan+ 17]

• Composite task completion bot with Hierarchical RL [Peng+ 17]
• Task-completion bot: efficient exploration for domain extension 

[Zachary+ 17]
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InfoBot as an interactive search engine

• Problem setting
• User is looking for a piece of information from one or more tables/KBs
• System must iteratively ask for user constraints (“slots”) to retrieve the 

answer

• A general rule-based approach
• Given current beliefs, ask for slot with maximum uncertainty
• Works well in most cases but,

• Has no notion of what the user is likely to be looking for or likely to know
• No principled way to deal with errors/uncertainty in language understanding
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InfoBot as an interactive search engine

Natural 
Language 

Understanding 
(NLU)

State Tracker/
Belief Tracker

Dialog Policy

Natural 
Language 
Generator 

(NLG)

Database

User simulator

Agent

User
Utterance

Acts/Entities

Dialog State

Dialog ActSystem
Response

Query

Results
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Deep Reinforcement Learning

Agent

User
Utterance

Acts/Entities

Dialog State

Dialog ActSystem
Response

NLU State Tracker

Dialog PolicyNLG

Reward

Backprop

Database

Query

Results

Not Differentiable!

User simulator
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Our end-to-end approach

1. Use a single deep NN for {dialog manager and KB}
2. Recurrent network to track states of conversation
3. Maintain (implicitly) a distribution over entities in KB
4. A summary network to “summarize” distribution information
5. Multilayer perceptron policy network

(Spoken) Language 
Understanding State Tracking

Dialog PolicyNatural Language 
Generation / Synthesis

“Find me a
Bill Murray movie”

Request(movie;
actor=bill murray)

Dialog Manager

Request
(release_year)

“When was it
released”

Knowledge Base1

2
3

4
5

Whole network can 
be end-to-end  

trained by BP/SGD!
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Soft attention for
KB-lookup

• Posterior computation:

Pr "GroundhogDay" ∝ Pr( Actor = "Bill Murray") ⋅ Pr ReleaseYear = "1993" ⋯
Each Pr slot = value is computed in terms of LU outputs

• Soft KB-lookup: sample a movie according to the posterior
• Randomization results in differentiability (similar to policy gradient alg.)
• As opposed to using SQL queries to look up results deterministically

Whole system can be trained using policy gradient & back-propagation
34



Result on IMDB using KB-InfoBot w/ simulated users

Agent Success Rate Avg Turns Avg Reward

Rule-Soft 0.76 3.94 0.83
RL-Hard 0.75 3.07 0.86
RL-Soft 0.80 3.37 0.98
E2E-RL 0.83 3.27 1.10
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Results on real users
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Three case studies

• Info bots: end-to-end training with non-differentiable knowledge base
• Composite task completion bots with Hierarchical RL [Peng+ 17]
• Task-completion bots: efficient exploration for domain extension
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Composite task completion bot with Hierarchical RL 
[Peng+ 17]

Travel Assistant

Book Flight

Book Hotel

Reserve 
Restaurant

Actions

“subtasks”

Naturally solved by 
hierarchical RL

38

https://arxiv.org/abs/1704.03084


A hierarchical policy learner

Similar to HAM [Parr & Russell 98] and hierarchical DQN [Kulkarni+ 16]
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Results on simulated and real users
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Subgoal discovery for HRL: 

divided and conquer 



The 4-room game



Three case studies

• Info bots: end-to-end training with non-differentiable knowledge base
• Composite task completion bots with Hierarchical RL [Peng+ 17]
• Task-completion bots: efficient exploration for domain extension 

[Zachary+ 17]
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Domain extension

• Most goal-oriented dialogs require a closed and well-defined domain
• Hard to include all domain-specific information up-front

New slots can be gradually introduced

time
ac

tr
es

s

pr
od

uc
er

bo
x 

of
fic

e

w
rit

er

Initial system deployed Challenge for exploration:
• How to explore efficiently
• to collect data for new slots
• When deep models are used
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Efficient exploration for dialogue
• 𝜖𝜖-greedy can be slow & wasteful, frequently trying known bad moves

• Compared to Atari/Go settings, failures in dialogue systems confer high economic costs

• Given uncertainty information, one can make smarter exploration decisions
• DQNs give best estimates of value functions, but don’t offer uncertainty information

• Our solution: get uncertainty info from Bayesian neural networks
• Explore in area where the model is not confident

45



Deep Bayes-by-Backprop Q Network 
(Deep BBQ Networks)

• Construct a BBQN w. Gaussian variational dist. and Gaussian prior
• Explore by Thompson sampling, drawing Monte Carlo (MC) samples 

from a stochastic neural net
• draw 𝒘𝒘𝒕𝒕 from 𝑞𝑞(𝒘𝒘|𝜃𝜃).
• set 𝑎𝑎𝑡𝑡 = argmax𝑎𝑎𝑄𝑄(𝑠𝑠𝑡𝑡 ,𝑎𝑎;𝒘𝒘𝑡𝑡)

• At train time draw one MC sample from BBQN and update by SGVB, 
using the re-parameterization trick [Kingma & Welling 13]
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Deep Q-network (DQN)
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[DeepMind 15]

DQN-learning of network weights 𝜃𝜃: apply SGD to solve

�𝜃𝜃 ← arg min
𝜃𝜃
�
𝑡𝑡

𝑟𝑟𝑡𝑡+1 + 𝛾𝛾max
𝑎𝑎

𝑄𝑄𝑇𝑇 𝑠𝑠𝑡𝑡+1,𝑎𝑎 − 𝑄𝑄𝐿𝐿 𝑠𝑠𝑡𝑡 ,𝑎𝑎𝑡𝑡
2

“Target network” to 
synthesize regression target

“Learning network” whose 
weights are to be updated
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Bayes-by-Backprop Q (BBQ) network
BBQ-learning of network params 𝜃𝜃 = 𝜇𝜇,𝜎𝜎2 :

�𝜃𝜃 = arg min
𝜃𝜃𝐿𝐿

KL 𝑞𝑞 𝐰𝐰 𝜃𝜃𝐿𝐿 | 𝑝𝑝(𝐰𝐰|𝐷𝐷𝑎𝑎𝐷𝐷𝑎𝑎

st
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e

Q
-v
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s

Still use “target network” 𝜃𝜃𝑇𝑇
to synthesize regression target

• Parameter learning: solve for �̂�𝜃 with Bayes-
by-backprop [Blundell+ 15]

• Params 𝜃𝜃 quantifies uncertainty in Q-values
• Action selection: use Thompson sampling 

for exploration
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Results on simulated users

Our BBQ approach 
successfully explores to 
adapt to handle new slots.

It also works best in regular 
dialogue settings (with 
fixed/full domain)
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BBQ results with real users

• DQN/BBQN: regular 
dialogue policy learning 
(with full/fixed domain)

• b-*: model trained on 
smaller domain

• a-*: models trained 
after domain extension
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Summary

• Neural approaches to MRC and QA
• Knowledge representation and search in neural space
• A case study: ReasoNet w/ long-term memory
• Ongoing research: visualize the reasoning process in neural space
• Learn more at Deep Learning for Machine Reading Comprehension

• An intelligent, human-like, open-domain conversational system
• Dialogue as RL
• Two case studies: Info bot and composite-task completion bot
• Ongoing research: subgoal discovery for hierarchical RL
• Learn more at deep RL for goal-oriented dialogues
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