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INTRODUCTION

The flexible and efficient decision-making that characterizes human behavior requires
quick adaptation to changes in the environment and good use of gathered information.
Thus, investigating the mechanisms by which humans learn complex behaviors is critical
to understanding goal-directed decision-making. In the past 20 years, cognitive neuro-
science has progressed immensely in understanding how humans learn from rewards
and punishment, particularly for simpler behaviors shared in common with other mam-
mals, such as learning simple associations between stimuli and actions. Reinforcement
learning (RL) theory (Sutton & Barto, 1998) has provided a crucial theoretical frame-
work explaining how humans learn to represent the value of choices and/or make
decisions that are more likely to lead to rewards than to punishments. However, both
cognitive neuroscience and artificial intelligence fields struggle with explaining more
complex, and more characteristically human, learning behaviors, such as rapid learning
in completely new and complex environments.

This chapter discusses the use of the RL framework to understand many complex
learning behaviors, focusing specifically on model-free RL algorithms for learning values
of or policies over states and actions, since we have a good understanding of how
cortico—basal ganglia loops use dopaminergic input to implement an approximate
form of this computation. We will show that many forms of complex human RL can
be framed by applying this RL computation, provided that we model the inputs and
outputs of the algorithm appropriately. Specifically, we argue that by better defining
the state and action spaces for which humans learn values or policies, we can broadly
widen the types of behaviors for which RL can account. We support this statement
with examples from the literature showing how the brain may be performing the same
computations for different types of inputs/outputs and how this can account for complex
behavior, such as hierarchical RL (HRL), structure learning, generalization, and transfer.

We will first provide a short introduction to RL, both from a computational point of
view, highlighting the limitations and difficulties encountered by this algorithm, and
from a cognitive neuroscience point of view, mapping these computations to neural
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mechanisms. We will then attempt to unify multiple frameworks from the human learning
literature, such as representation learning (Wilson & Niv, 2012), HRL (Botvinick, Niv, &
Barto, 2009), rule learning (Collins & Koechlin, 2012), and structure learning (Collins &
Frank, 2013), into a single framework, whereby the brain uses a single mechanistic
computation—defined by a model-free RL mechanism—and applies it to different input
and output spaces, notably, state and action spaces. We will first focus on how we can miti-
gate the curse of dimensionality by altering how we define state spaces, leading to more
complex and efficient learning. We will then show that assuming different action spaces,
in particular, by introducing temporal abstraction or rule abstraction, leads to faster
learning and to an ability to generalize information. Last, we will show that humans some-
times create latent state or action spaces, which seemingly makes learning problems more
complicated but comes with a number of behavioral advantages. Finally, we will conclude
by broadening to other open questions in flexible learning: the role of the reward function
in RL, the various algorithms other than model-free RL that may also contribute to effi-
cient learning, and the roles of models of the environment in learning.

REINFORCEMENT LEARNING
Reinforcement learning algorithms

RL models are a class of algorithms designed to solve specific kinds of learning problems
for an agent interacting with an environment that provides rewards and/or punishments
(Fig. 5.1A). The following type of “grid world” problem exemplifies an archetypical RL
problem (Fig. 5.2A). The agent (black square) sits in one of the cells of a grid environ-
ment and can navigate through the grid by choosing one of four actions (up, down,
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Figure 5.1 Schematic of reinforcement learning (RL) systems. (A) RL algorithms observe a state s as
input and select an action a as output. The environment provides reinforcement r, which is used
to update the RL algorithm and transitions to the next state. (B) An approximation of these compu-
tations is performed in the cortico—basal ganglia loop (Frank et al., 2004). For example, a sensory
observation leads to preactivation of possible actions in the premotor cortex (PMC); the PMC—basal
ganglia loops allow gating of one action; dopamine (DA) signals a reward prediction error (RPE) signal
that reinforces corticostriatal synapses, allowing the gating mechanism to select the actions most
likely to lead to reward. (C) This learning process occurs at multiple hierarchical levels in the brain
in parallel (Collins & Frank, 2013). For example, loops involving the prefrontal cortex allow learning
to occur between abstract contexts and high-level rules, which then constrains the lower-level
learning loop.
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Figure 5.2 Examples of reinforcement learning (RL) problems. (A) Grid world: The artificial agent nav-
igates between cells using one of four directions. (B) Animals navigate in a maze to obtain reward; the
states s; are physical locations. (C) Instrumental learning task: Participants use reward feedback to
learn to select the correct button for each possible stimulus (e.g., shapes). (D) Representation learning
task: Participants need to select one of two patterns; only one dimension matters (here, shape matters,
with the star being the most rewarding of the two shapes). (E) Hierarchical learning: Participants learn
that for one color (red—top), the shape of the input determines the correct action, but for the other
color (blue—bottom), the texture determines the correct action. (F) Options framework or hierarchical
RL (HRL): In both cases, participants select the same high-level action (or option): go to the star. This
constrains a different sequence of low-level actions. (G) Structure learning: Participants learn to select
one high-level abstract action (a rule, or task set, TS1) for some colors and another (TS2) for other
colors; in parallel, they learn to associate low-level actions (button presses) to stimuli (here, shapes)
for each of the high-level abstract rules. (H) Latent rule learning: Participants learn high-level rules
as in (G) but do not observe the contexts. Instead, they infer the latent context from their observations
of the outcomes to their choices.

left, or right). The agent can collect points by selecting some actions or by entering some
cells (e.g., the top-left corner in Fig. 5.2A). The goal of the agent is to maximize points
earned. Defined more technically, an RL problem is characterized by a state space S
(here, the cells in the grid world), an action space A (here, the four available actions),
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a transition function T(s,a,s’) = p(s’|s,a) that controls the probability of the next state s’
given that the agent chose action a in a state s and a reward function R(s,a,s’). The
goal of the agent is to optimize the expected sum of future discounted rewards and,
specifically, to find a policy 7t(s,a) = p(als) that maximizes this sum. One way to achieve
this goal is to estimate the expected value of each state or of each state and action under
the optimal policy (where value is the expected sum of discounted future rewards). If one
can do this, the optimal policy falls out by selecting the action with the highest value.

There are many different algorithms that propose solutions to this problem and offer
guarantees of convergence. We focus on a simple class of algorithms, called model-free
because they do not require a model of the environment (i.e., knowledge of the transi-
tion function and the reward function). We focus on model-free RL algorithms, such as
temporal difference learning, Q-learning, SARSA, and actor-critic algorithms (Sutton &
Barto, 1998), because they have been extremely helpful in understanding animal
behavior and neural correlates of learning. Model-free RL algorithms use a key quantity,
called the reward prediction error, to learn to estimate values of states or of state—action
pairs. At each trial ¢, the reward prediction error is defined as the difference between what
is expected for future discounted reward after taking an action (the sum of reward r and
discounted value of next step 7y V(s; 1), where 7 is the discount factor) and what was
expected prior to taking that action (I/(s;)). Using the reward prediction error
e =r—+ vy V(s +1)—V(s;) to update the previous estimate of I/(s) by a small increment
of the error a..rpe (where « is the learning rate) is a good algorithm under certain assump-
tions and constraints (Sutton & Barto, 1998).

Reinforcement learning in the brain

Through this model-free RL algorithm, an artificial agent can learn the optimal way to
attain a reward in the simple grid world of the example in Fig. 5.2A, after many attempts
to solve this problem (Sutton & Barto, 1998). It is a good model of behavior for an animal
learning to find its way toward a reward in a maze (Fig. 5.2B). Further, this algorithm has
been a critical source of progress in the cognitive neuroscience of learning because it pro-
vides a useful model of the neural correlates of RL. Specifically, researchers have discov-
ered that dopaminergic neurons fire in a pattern that is consistent with a reward
prediction error signal: Their firing increases phasically with unexpected reward,
decreases phasically with missed expected reward or with unexpected punishment, and
stays at the tonic level for expected rewards (Montague, Dayan, & Sejnowski, 1996).
Dopamine release in the striatum follows parametrically what would be expected for a
bidirectional reward prediction error signal (Hart, Rutledge, Glimcher, & Phillips,
2014). Furthermore, dopamine signaling in the striatum modulates plasticity of cortico-
striatal synapses, with increased dopamine strengthening associations in the pathway facil-
itating action selection and decreasing them in the pathway blocking it; decreased
dopamine has the opposite effects in these pathways (Adamantidis et al., 2011; Hamid
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et al., 2015; Kravitz, Tye, & Kreitzer, 2012; Tai, Lee, Benavidez, Bonci, & Wilbrecht,
2012). Cortico—basal ganglia loops act as a gate for action selection that is dependent
on the strength of these two corticostriatal pathways (Collins & Frank, 2014; Frank,
Seeberger, & O’Reilly, 2004). Thus, there is strong evidence that cortico—basal ganglia
loops implement a model-free RL computation, with dopamine reward prediction errors
training corticostriatal associations to help select choices that lead to reward and avoid
those that lead to punishment (Fig. 5.1B).

Limitations

Model-free RL algorithms are thus very successful at explaining animal learning because
they capture many behaviors well, including for example, probabilistic reward learning
(Frank, Moustafa, Haughey, Curran, & Hutchison, 2007), and they have a plausible
mechanistic implementation in the brain. Using these computational models to link be-
tween brain and behavior has increased understanding of individual differences in RL, of
learning deficit in some pathologies (e.g., Parkinson) and of the effect of dopaminergic
drugs on learning (Frank, 2005). However, model-free RL also has a number of limita-
tions that have led cognitive neuroscience and artificial intelligence researchers to look
at other algorithms to better model human learning and enhance artificial agents, respec-
tively. One major limitation of RL is that it suffers from the curse of dimensionality: While
RL can be relatively efficient in small problem spaces, learning with this algorithm in rela-
tively bigger problem spaces would take an enormous amount of practice, making it
extremely inefficient. In contrast, humans can often learn new behaviors very quickly
(e.g., how to drive a car). Another limitation is that model-free RL is inflexible: When
the environment changes (e.g., the position of the reward in the grid world), model-
free RL algorithms need to slowly unlearn. By contrast, humans (and animals) are sensitive
to changes in the environment and can quickly alter their behavior toward their goal. To
solve these and other limitations of model-free RL algorithms, researchers in artificial in-
telligence and cognitive neuroscience have proposed new algorithms. For example,
model-based RL algorithms offer some solutions to the inflexibility problem by proposing
a different way of computing expected values that integrates knowledge about the model
of the world. However, we will show here that we can understand many complex human
behaviors in the framework of the same simple model-free algorithm, with its grounding
in a well-understood neural implementation, by carefully considering the state and action
spaces over which model-free computations of estimated values or policies are performed.

Framing the problem

‘What are state and action spaces when modeling human behavior? This modeling choice
is often dictated by the experimental design and is assumed away as obvious. We give
some examples in Fig. 5.2B and C. The most direct translation from original RL
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algorithms, such as grid worlds, is the modeling of spatial learning tasks in which animals
need to learn to find a reward in a maze. States are modeled as discrete places in the maze
at which a decision is needed, and actions are modeled as choices of direction (e.g., left or
right; Fig. 5.2B). Note that making different choices for the state/action space could lead
to a very different model (e.g., with more discrete places in the maze, actions could
include stop, groom, etc.). For human behavior, state spaces are often replaced with
sets of stimuli, and actions are replaced with simple choices, such as key presses
(Fig. 5.2C); this modeling choice retains a fairly unambiguous interpretation of the envi-
ronment. Probabilistic reward learning tasks offer a good example of the ambiguity of
defining state/action spaces. In these tasks (e.g., Davidow, Foerde, Galvan, & Shohamy,
2016; Frank et al., 2004), subjects may be asked to choose between two shapes (e.g.,
Fig. 5.2D). There is some ambiguity in how this task should be modeled. Is the state
the current pair of stimuli? Is this pair dependent or independent of their left/right
position? More generally, this task tends to be modeled as a single state and two actions:
“picking the star” or “picking the circle.” It is important to note that (1) this action state is
much more abstract than “press the left/right button,” as it does not map to a single set of
motor commands, and (2) a different choice, for example, “pick left” versus “pick right,”
would be unable to capture behavior in this task, since left and right are not informative
about reward. Despite the abstraction of this action space, the model-free RL algorithm
excels at capturing the behavior and neural effects in this task (Davidow et al., 2016). We
show here that we can capture many behaviors of higher complexity in the model-free
RL framework by carefully considering the state and action spaces over which the
computations occur. Table 5.1 shows in pseudocode how this can be done in the
examples of Fig. 5.2. We will show that developing appropriate states and action spaces
overcomes many issues thought of as classic limitations of model-free RL.

STATE SPACES

Simplifying the state space

Figuring out an appropriate state space over which RL operates can dramatically improve
RL performance by reducing the curse of dimensionality. Learning to drive is a task,
which teenagers may accomplish in a few hours but which many top artificial intelligence
researchers and companies have been unable to get an artificial agent to perform without
major issues. How do we use our experience from 15 years of life to accomplish such fast
learning? Taking all visual inputs into account would be overwhelming to a learning
agent, as we essentially never see the same scene twice when driving. However, if one
can discern that the relevant information for making a decision whether to stop or to
go at an intersection is the color of the light (red, yellow, or green) then one part of
the problem is suddenly reduced to a one-dimensional, two-feature state space. Niv and
colleagues investigated such state space learning in a series of studies (Leong et al., 2017;



Learning Structures Through Reinforcement

Table 5.1 Pseudocode for learning examples in Fig. 5.2

A) Grid world

B) Maze

C) Instrumental learning
D) Representation learning

E) Hierarchical reinforcement
learning

F) Options— hierarchical
reinforcement learning

G) Structure learning

H) Latent rule learning

RL(S={star, circle}, A= {left, right})

RL(S;={colors},

A;={attend(texture) =RL(S,= {texture},
A,={left, right}),

attend(shape) =RL(S3= {shape}, A,={left,
right})})

RL(S={all (Xi,)/j)}:
A;=1{gotocircle=RL(S={all (xj,y;)}, A2=A),
go to star=RL(S=1{all (x5,y;)}, Az=A)1)})

RL(S;={colors},

A;={policyl =RL(S,= {shapes}, A= {buttonl,
button2}),

policy2=RL(S,= {shapes}, A,= {buttonl,
button2})})

RL(S;={contextl, context2, ...},

A;={policyl =RL(S,= {shapes}, A,= {buttonl,
button2}),

policy2=RL(S,= {shapes}, A,= {buttonl,
button2})})

RL represents a single learning algorithm producing a policy over given state or action spaces S, A. Light blue is the “naive”
or flat modeling of a problem, using the simplest state spaces for inputs and action spaces for outputs. Black models structure

learning, as observed in participants.

Niv et al., 2015; Wilson & Niv, 2012; see also Chapter 12 by Shuck, Wilson, and
Niv), and a simplified example is schematized in Fig. 5.2D. At each trial, participants

were shown three items and needed to choose one item to try to win points. Each

item had three dimensions (shape, color, and texture), and each dimension had three

features (e.g., red, blue, and green). In a learning problem, only one feature from one
dimension (e.g., the star) had a high likelihood of leading to reward; thus, if participants

were able to learn that the other two dimensions did not matter and that they should

learn to represent the problem as an RL problem concerned only with shapes, they could

significantly simplify the dimensionality of the problem and thus improve their perfor-
mance (Wilson & Niv, 2012). Results showed that behavior was best explained by a
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process where participants learned to focus their attention on a single dimension and
applied simple RL to features of this dimension. Thus, they effectively created a relevant,
smaller state space, over which an RL algorithm was run (Table 5.1D); indeed, reward
prediction error signals in the striatum were better explained by assuming RL happened
over the state space defined by the focus of attention than by other models. This is one of
the most direct examples of how humans define nonobvious state spaces over which to
learn values or policies with RL. An important question is how we create the state space
itself; in the example given here, how do we learn the feature on which we should focus
our attention? A study by Leong et al. (2017) showed that creation of state space can be
performed using reward feedback, such that there is a bidirectional interaction: Attention
told subjects over which dimensions they should perform RL, and reward prediction er-
rors helped participants direct their attention to the correct dimension and thus create the
state space over which to operate RL.

Multiple state spaces

A state space that is appropriate for one goal may not be appropriate for another.
Consider our driving example with the traftic light: If you are in the lane to go straight,
the main round lights are relevant to your decision to stop or go, but if you are in the lane
to turn left, you should ignore these lights and instead pay attention to the left arrow
lights. Said differently, your state space should be conditioned on an additional aspect
of the environment: which lane you are in. Being able to create multiple state spaces
and knowing the one to which you should apply RL would allow significantly more
complex learning behavior. Indeed, it would allow a hierarchical contextualization of
learning by context. A series of studies (Badre & Frank, 2011; Badre, Kayser, & Esposito,
2010; Frank & Badre, 2011) has shown that healthy young adults are able to hierarchical-
ly contextualize the learning space and that it strongly improves their learning. Partici-
pants saw a single three-dimensional item on the screen and had to learn which of
three actions to pick to receive points. In a flat condition, all the three dimensions
were needed to figure out the correct action for an item, leading to three-dimensional
state spaces with an overwhelming 18 items. In a hierarchical condition, one of the di-
mensions (color) controlled which of the other two dimensions was relevant for learning
(e.g., if the item was red, only the shape mattered, but if it was blue, only the texture
mattered; Fig. 5.2E). Thus, participants could essentially build two small state spaces
(one corresponding to three textures and another to three shapes) and at each trial deter-
mine which state space to use based on the color of the item (Table 5.1E). Badre et al.
(2010) showed that participants did learn this way, as evidenced by much more efficient
learning in the hierarchical condition than in the flat condition. Further, studies (Badre &
Frank, 2011; Frank & Badre, 2011) have shown that this method of learning could be
computationally understood as RL computations happening over two hierarchical loops
and different state (and action—see below) spaces (Fig. 5.1B): The top loop learned
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through RL which of the two state spaces to select for a given color, while the bottom
loop learned which key press to select for either of the two simpler state spaces.

This example highlights a number of important points. First, RL computations may
happen over multiple state spaces in the same learning problem, with other signals serving
as a contextualizing factor. Second, they may happen simultaneously over multiple state
spaces (in the previous example, learning which state space to select for a color state and
which key to press for a given shape or texture). This latter point implies two further
important features: (1) a notion of hierarchy, whereby the choice from one of the RL
loops has an influence over the learning and decision of a “lower-level” loop and (2)
the choice in the higher hierarchical loop is more abstract than the one at the lower
level—indeed, in this example, RL in the top loop happens not only on a subpart of
the original state space (the color dimension) but also on a new abstract action space,
indicating the dimension on which a subject must focus attention. Below, we will
come back to hierarchical representations in RL and to the importance of learning action
spaces, in addition to state spaces.

ACTION SPACES

Abstract hierarchical action spaces

The study by Frank and Badre (2011), discussed above, showed that learning the hierar-
chical structure of the environment, which simplifies a large unstructured state space into
two smaller state spaces selected conditionally on a context, can facilitate learning. It
introduced the need to operate RL not only over multiple state spaces but also over
an abstract action space, where the action is the decision of which lower-level state space
to use. More generally, other complex learning behavior can be obtained by this com-
bination of two characteristics: (1) RL at multiple hierarchical levels simultaneously
and (2) RL over abstract higher-level action spaces that control lower-level decisions.
In that sense, the higher-level actions are themselves policies mapping lower-level stimuli
to lower-level actions. A body of work extended the previous notion of HRL by
showing that such abstract actions could be more than just attentional filters (i.e., the
dimension of the input to which I should focus my attention for making my decision),
and could instead be abstract policies, also called “rules” or task sets (Collins & Frank,
2016a,b, 2013; Collins & Koechlin, 2012). Specifically, similarly to the studies of Badre
and colleagues, these studies showed that participants learned to make a choice at a higher
level in response to a feature of the environment (e.g., a color) and that the higher-level
choice constrained answers to other features of the environment. However, in this case,
the higher-level choice was not that one should focus on one dimension and neglect
another dimension—indeed stimuli were only two-dimensional. Rather, the higher-
level choice constrained the correct set of choices for the features of the second dimen-
sion (Fig. 5.2G).
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Going back to the driving example, whether you are in France or in the United
Kingdom, you need to pay attention to all the same visual signals to drive correctly.
However, the actions you take in answer to these signals depend on the context:
arriving at a circle in France requires you to turn right, but the same in the United
Kingdom requires you to turn left. Thus, more complex behavior sometimes requires
us not only to use context to determine where to focus our attention but also to deter-
mine how to respond to the focus of our attention. We showed that participants create
such high-level abstract choice spaces, where choices correspond to this high-level pol-
icy choice; we call them rules or task sets (Collins & Frank, 2016a,b, 2013; Collins &
Koechlin, 2012, Table 5.1G). Creating rules that one selects in response to a context,
but that are not bound or equated to that context, is a critical factor in flexible, efficient
learning. Indeed, because participants created these choice spaces, they were also able to
try these choices in new contexts; this means that they were able to generalize a
high-level policy to a new context (for example, the rules of driving in France apply
mostly as a whole to driving in Germany). Furthermore, the new associations were
stored by the policy learned at the lower level, constrained by the higher-level choice,
without being tied to the context in which it was learned. Thus, participants were able
to transfer knowledge learned in one context to other contexts that required selecting
the same rule (for example, after having observed that driving is similar in Boston and
Berkeley, learning how to handle a four-way stop in one location would immediately
transfer to the other).

Creating an abstract action space (where actions are rules or task sets and can be
viewed as a policy over another state action space) greatly increases the flexibility and
efficiency of learning because it allows generalization and transfer. It also provides
some form of divide and conquer, whereby a complicated decision over a large state space
(all possible input features) is transformed into a series of simpler, hierarchical decisions:
first selecting a rule in response to a context; then, given that rule, selecting an action in
response to a stimulus. We showed with computational modeling and electroencepha-
lography (Collins, Cavanagh, & Frank, 2014; Collins & Frank, 2016a,b, 2013) that this
process can be performed in a model that applies RL computations in hierarchical
cortico—basal ganglia loops (Fig. 5.1C). Thus, such hierarchical structure learning can
also be understood as RL over appropriate state (at multiple hierarchical levels) and action
(at multiple abstraction levels) spaces.

Temporally abstract actions

The previously described form of RL is clearly hierarchical: It consists of selecting a
higher-level rule, which is really a policy in that it constrains selection of actions at the
lower level. This feature allows us to draw a parallel to a specific class of algorithms
that are known in the literature as “HRL,” also called the “options framework.” The
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options framework also seeks to improve on simple RL mechanisms by building a more
complex action space and, specifically, by introducing options. Options can be seen as
local policies or hierarchical actions (Table 5.1F). In the simplest case, options correspond
to a class of sequences of simple actions that lead to a subgoal. For example, reaching the
door of a room in a grid world is a high-level option and may define a local policy (how
to reach a door from any point in the room or the star in the example of Fig. 5.2F). In the
driving example, an example of a high-level option is shifting gears. You may learn at the
high level when to shift or not to shift gears, but then once you select that option, it
requires a series of lower-level actions (engage the clutch, shift the gear, then release
the clutch) over which you can also learn.

Using options can partially solve the curse of dimensionality by facilitating explora-
tion (Botvinick et al., 2009). Indeed, a single higher-level choice may lead an agent to
explore further and more efficiently. Options also capture an important feature of human
sequential behavior, which often includes hierarchical sequences of actions. A few studies
have shown evidence of human learning and neural computations being well explained
by the options framework, whereby learning happens hierarchically, both for the option
itself and for the actions within the option (Diuk, Tsai, Wallis, Botvinick, & Niv, 2013;
Ribas-Fernandes et al., 2011; Solway et al., 2014). In these studies, participants made
choices in sequential environments that provided a possibility for HRL. Further, these
studies showed evidence in the brain for reward prediction errors corresponding to
learning over both action spaces (within the option policy and at the higher hierarchical
level).

LATENT STATE AND ACTION SPACES

We have shown that many complex learning behaviors can be explained as applying a
simple model-free RL algorithm to the correct state and action space, or sometimes as
applying more than one RL computation to multiple appropriate state and action spaces
in parallel. An interesting feature is that in hierarchical forms of RL (structure learning,
options framework, and hierarchical rule learning), the higher-level action space is
abstract in the form of a policy. In particular, it cannot be described as a concrete motor
action. Here, we show that abstraction in the state space can also help understand more
complex learning behaviors. In particular, assuming unobservable, or latent, states can
greatly enhance the flexibility of the learning agent (Gershman, Norman, & Niv,
2015). For example, if you are driving in winter, you might not be able to see that
the road 1s icy, but if you observe that your usual actions lead to undesirable consequences
(slipping), you might deduce that the latent cause in the environment is the weather and
adapt your behavior based on this latent cause. This example captures some of the impor-
tant features for which RL over latent states or causes can better explain human learning:
when the contingencies of the environment change suddenly but not in an observable
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way (e.g., in reversal learning experiments (Hampton, Bossaerts, & O’Doherty, 2006)),
an RL agent operating over the observable state space needs to unlearn previous associ-
ations before being able to learn new associations. By contrast, humans may identify a
change point, infer a new unobservable context or latent cause, and learn over this state.
Several studies (Gershman, Blei, & Niv, 2010; Gershman et al., 2015; Soto, Gershman, &
Niv, 2014) have shown how this assumption can explain a number of learning phenom-
ena, such as extinction and compound generalization.

Latent spaces enrich the state representations over which RL operates. In combina-
tion with other previously described mechanisms, such as abstract action spaces (rules)
that hierarchically constrain simultaneous learning over other state and action spaces,
the mechanism of creating latent spaces provides an explanation for additional aspects
of human fast and flexible learning. One behavioral study (Collins & Koechlin, 2012)
had participants learn associations between one-dimensional stimuli and actions (task
sets) using probabilistic reward feedback (Fig. 5.2H). The task sets changed periodically
without warning and, unbeknownst to participants, could be reused as a whole later in
the experiment.

Results showed that participants were able to create both an abstract action space of
task sets and an abstract state space of latent temporal contexts (Table 5.1H); they iden-
tified the current temporal context as a state in which a given task set was to be selected,
constraining RL over association between an observable state space (stimuli) and actions
(key presses). Furthermore, when they identified a new temporal context (after an
inferred switch in the environmental contingencies), they explored in the abstract action
space of task sets, reselecting previously learned strategies as a whole, rather than
exploring only in the low-level state space (Collins & Koechlin, 2012; Donoso, Collins,
& Koechlin, 2014). This strategy allowed participants to transfer task sets to new contexts
and thus to adapt more quickly than they would have otherwise.

The examples given above show that much of complex human learning does not
require any learning algorithm more complex than model-free RL, provided that the
latter algorithm is applied to the right inputs and outputs (state and action spaces).
This process may require (1) running this algorithm over more than one set of spaces
in parallel, a task for which the cortico—basal ganglia loops are well configured
(Alexander & DeLong, 1986), and (2) using hierarchical influence of one output over
another input, for which the prefrontal cortex is well organized (Badre, 2008; Koechlin,
Ody, & Kounether, 2003; Koechlin & Summerfield, 2007; Nee & D’Esposito, 2016).
These features enable much more efficient and flexible learning than was originally
thought possible with a simple model-free algorithm for RL value estimation. Specif-
ically, they allow for fast and efficient exploration, improvement of performance by
massive simplification of problems, and fast learning in new environments by generaliza-
tion and transfer of information.
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HOW DO WE CREATE THE STATE/ACTION SPACES?

Efficiently modeling complex human learning with model-free RL crucially relies on
operating over the right state and action spaces. Using inappropriate spaces instead
strongly impairs learning, as shown, for example, by Botvinick et al. (2009) in simulations
where using incorrect options lead to slowed exploration. The question of how we
acquire the appropriate state and action spaces for our current environments remains
largely open, although the previous examples do suggest some potential mechanisms.

For learning state spaces when the optimal state space is a subspace of the full sensory
space, some studies (Leong et al., 2017; Niv et al., 2015) suggest that we use a frontopar-
ietal mechanism to focus attention specifically on that subspace and that we learn to do so
using reinforcement. Frank and Badre (2011) suggest that the gating mechanisms of the
prefrontal cortex—basal ganglia loops may learn which aspects of the environment to
keep in working memory, as well as which items should be allowed to influence other
loops, thus also using the simple RL mechanism to create the ad hoc state spaces required
for HRL. Collins and Frank (2013) also showed that such mechanisms enabled the
creation of abstract action spaces. Furthermore, there seems to be a strong bias toward
learning occurring hierarchically. Specifically, some studies (Badre & Frank, 2011; Badre
et al., 2010) have shown that participants engaged anterior portions of the prefrontal
cortex a priori initially, even in problems that could not be simplified. Further, other
studies (Collins & Frank, 2013; Collins et al., 2014) have shown that participants built
a hierarchical abstract rule structure even in environments that did not immediately
benefit from it, highlighting a more general drive toward this kind of organization.
This bias toward hierarchical learning could be due to a prior belief that hierarchical
structures are useful (Collins & Frank, 2016a,b) or to constraints that result from the
way our hierarchical cortico—basal ganglia loops evolved from motor cortex—originating
loops (Collins & Frank, 2016a,b), or, more likely, it could be due to both.

A series of models from Alexander, Brown, and colleagues (Alexander & Brown,
2011, 2014, 2015) also point out the potential importance of medial prefrontal cortex
in learning rules for cognitive control. Their models assume that the medial prefrontal
cortex learns to represent errors of prediction at various hierarchical levels, thus teaching
the lateral prefrontal cortex to represent useful state and action spaces to minimize such
errors of prediction. These models also resonate with work by Holroyd and colleagues
(Holroyd & McClure, 2015; Holroyd & Yeung, 2012), which points out the importance
of the anterior cingulate cortex (ACC) in extended motivated behavior. Specifically, they
argue that the ACC enables HRL (in the sense of the options framework), whereby the
hierarchy is in the choice of higher-level actions that constrain sequences of lower-level
actions.

This HRL/options framework also raises the question of how the action space is
created, or the “options discovery” problem: How do we create options that take us
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to the doors of the room rather than to the windows? Theoretical work suggests that us-
ing pseudoreward when reaching a subgoal and using RL with this pseudoreward to learn
the option may help option creation (Botvinick et al., 2009), and there is some evidence
that such a mechanism may occur in the brain (Diuk et al., 2013; Ribas-Fernandes et al.,
2011; Solway et al., 2014). However, how do we determine useful subgoals? Work by
Schapiro and colleagues (Schapiro, Rogers, Cordova, Turk-Browne, & Botvinick, 2013;
Schapiro, Turk-Browne, Botvinick, & Norman, 2016) has shown that humans are able
to identify bottlenecks in the environments we navigate and, if given a chance, create
options with these bottlenecks as subgoals, which might be one mechanism for creating
a useful action space in the framework of options.

Interestingly, some methods for learning useful state and action spaces require a model
of the environment. For example, creating useful options may require identifying bottle-
necks in a mental map of the environment. In the case of latent state spaces, in particular,
a model of the environment consists of a likelihood function, defining expected out-
comes (for example rewards) in response to interactions with the environment under a
given latent space (Collins & Koechlin, 2012; Gershman et al., 2015). Using this likeli-
hood function allows both an inference about the current hidden state and the online
creation of what the latent state space is (Collins & Frank, 2013; Gershman et al.,
2010). It is important to note that these models are used to create a state space and to infer
a state but that, despite this use of a model, the learning algorithm in operation may still
be a model-free RL algorithm. This highlights the blurry line between what we should
label as model-free and model-based learning (see also Chapter 18 by Miller, Ludvig,
Pezzulo, and Shenhav); most learning may use a model of the environment, even in
the absence of a mechanism of forward planning, as is usually defined in formal
model-based RL algorithms (Daw, Gershman, Seymour, Dayan, & Dolan, 2011). RL
with a model can reach many more types of behaviors than those usually understood
by model-based RL.

OPEN QUESTIONS

We have shown that thinking of human learning as a simple computation occurring
over well-tailored state and action spaces can explain many feats of flexible and efficient
decision-making. However, many open questions remain, one of which we have
already discussed: how these state and action spaces are built. Two other classes of ques-
tions also merit further research to better understand human learning. Learning from
reinforcement requires four elements: a state and action space, a reward function,
and an algorithm to learn a policy. We have focused here on the role of the state
and action spaces and have just assumed a simple model-free RL algorithm and reward
function. However, both learning algorithms and reward functions should be further
investigated.
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Reward function

Most RL experiments use primary or secondary rewards or punishments, such as food,
pain, points, and money (gains or losses), as reinforcers. However, other features might
also contribute to the reward function. For instance, theoretical and experimental results
have suggested various “bonuses” to the reward function, related for example to novelty
(Kakade & Dayan, 2002) and information (Bromberg-Martin & Hikosaka, 2009); these
and other influences may be reflected in the dopamine reward prediction error signal (see
also , Chapter 11 by Sharpe and Schoenbaum). Other results have shown costs in the
form of mental effort and conflict (Cavanagh, Masters, Bath, & Frank, 2014; Kool &
Botvinick, 2014; Westbrook & Braver, 2015; see also Chapter 7 by Kool, Cushman,
and Gershman). Furthermore, the movement of gamification relies on the notion that
learners are motivated by nonrewarding outcomes (e.g., stars) that mark the attainment
of subgoals (Deterding, Dixon, Khaled, & Nacke, 2011; Hamari, Koivisto, & Sarsa,
2014). This notion relates to pseudoreward, which may be useful for learning options
in the HRL framework: Maintaining motivation over extended behaviors when real
reward is infrequent might require us to consider intermediary, symbolic subgoals as
rewarding (Diuk et al., 2013; Ribas-Fernandes et al., 2011; Lieder & Grittiths, n.d.).
Theoretical work has shown that this notion could tremendously improve learning in
complex situations (Lieder & Griffiths, n.d.). Thus, future research in human learning
should aim to better understand what outcomes contribute to the reward function
used by the RL algorithm for learning and to determine whether humans manipulate
this reward function beyond normal reward to create better representations of the
learning problem.

Algorithms

Separating the algorithm of learning from its inputs and outputs—the state and action
spaces—enables us to better understand how a rich collection of human learning behav-
iors can be explained with this framework. However, this argument should not be taken
to mean that we propose the brain uses only the learning algorithm presented and exactly
this algorithm to learn to make decisions from reward information. In fact, much remains
poorly understood about the computations performed by the brain to learn policies. For
the model-free RL algorithm, we understand that the cortico—basal ganglia loops with
dopamine reward prediction errors approximate it, but many precise aspects of this
computation remain under debate. For example, the direct and indirect pathways appar-
ently have redundant roles in learning (Collins & Frank, 2014; Dunovan & Verstynen,
2016); more research is needed to better understand their distinct contributions to
model-free RL.

Furthermore, it is very likely that the brain also uses, in parallel, other algorithms to
learn policies from reward. One method is simple memorization of associations in
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working memory, which accounts for part of learning from rewards in simple associative
learning tasks (Collins & Frank, 2012; Collins, Ciullo, Frank, & Badre, 2017). Similarly,
by allowing us to sample from past events, episodic memory may play an important role
in policies learned from reward (Bornstein & Norman, 2017; Bornstein, Khaw,
Shohamy, & Daw, 2017). Furthermore, there is also ample evidence that humans also
perform model-based planning RL in parallel to model-free RL (Daw et al., 2011;
Doll, Duncan, Simon, Shohamy, & Daw, 2015). Exactly how this prospective planning
occurs, especially many steps ahead, is not well understood—it may depend on the use of
heuristics to simplify the forward search (Huys et al.,, 2015) or inferential processes
(Chapter 3 by Solway and Botvinick). Thus, much remains unknown about the
algorithms themselves.

CONCLUSION

Human learning is incredibly efficient and flexible and does much to promote human
intelligence and goal-directed behavior. In this chapter, we explored how a very simple
family of algorithms—that we know are approximately implemented by a precise neural
circuitry in the brain—can explain a surprisingly wide array of complex learning, unifying
literature on HRL, the options framework, structure learning, and representation
learning. Specifically, we show that this simple computation of expected value (or policy
weight), obtained by incremental updates with reward prediction errors, can lead to very
efficient learning, exploring, transfer, and generalization when applied to useful state and
action spaces. Understanding how we construct these useful spaces and how we interlock
multiple computational loops in parallel to learn at multiple levels simultaneously is a
future challenge. One important point is that finding useful spaces is not simply a matter
of simplifying the sensory and motor space by factoring it into lower-dimensional or
discrete subspaces but can rather also involve making the spaces more complex—creating
new states that are not a subspace of sensory and motor space but are abstract states and
actions carrying more information about the structure of the problem. These state and
action spaces of higher complexity can counter-intuitively lead to an eventual improve-
ment in behavior by rendering decision-making more flexible and by providing useful
subpolicies that achieve subgoals or other generalizable chunks of behavior.
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