Instructors
Teaching Assistants
Lectures
Time: Monday 1–2:30 pm
Location: 306 Soda
Office hours
Richard: 3-4 PM on Tuesdays in 723 Soda.
Mailing list and Piazza
To get announcements about information about the class including guest speakers, and more generally, deep learning talks at Berkeley, please sign up for the talk announcement mailing list for future announcements.
For students enrolled in the class, please join the Piazza and the student Google Group.
Syllabus
Course description
In recent years, deep learning has enabled huge progress in many domains including computer vision, speech, NLP, and robotics. It has become the leading solution for many tasks, from winning the ImageNet competition to winning at Go against a world champion. This class is designed to help students develop a deeper understanding of deep learning and explore new research directions and applications of deep learning. It assumes that students already have a basic understanding of deep learning. In particular, we will explore a selected list of new, cutting-edge topics in deep learning, including new techniques and architectures in deep learning, security and privacy issues in deep learning, recent advances in the theoretical and systems aspects of deep learning, and new application domains of deep learning such as autonomous driving.
Class format and project
This is a lecture, discussion, and project oriented class. Each lecture will focus on one of the topics, including a survey of the state-of-the-art in the area and an in-depth discussion of the topic. Each week, students are expected to complete reading assignments before class and participate actively in class discussion.
Students will also form project groups (two to three people per group) and complete a research-quality class project.
Please also refer to the course overview slides from the first lecture for more information.
Enrollment information
For undergraduates: Please note that this is a graduate-level class. However, with instructors’ permission, we do allow qualified undergraduate students to be in the class. If you are an undergraduate student and would like to enroll in the class, please fill out this form and come to the first lecture of the class. Qualified undergraduates will be given instructor codes to be allowed to register for the class after the first lecture of the class, subject to space availability.
Students may enroll in this class for variable units.
- 1 unit: Participate in reading assignments (including serving as discussion lead).
- 2 units: Complete a project.
- 3 units: Both reading assignments and a project.
Listing in the Berkeley Academic Guide. Class # is 34001.
Deadlines
- Reading assignment deadlines:
- For students,
- Submit questions by Friday noon
- Vote on the poll of discussion questions by Saturday 11:59 pm
- For discussion leads,
- Send form to collect questions from students by Wednesday 11:59 pm
- Summarize questions proposed by students to form the poll and send it by Friday 11:59 pm
- Summarize the poll to generate a ranked & categorized discussion question list and send the list to teaching staff by Sunday 7pm
- For students,
- Project deadlines:
- February 13: project proposal due
- March 13: first project milestone report due
- April 10: second project milestone report due
- May 1: poster session
- May 10: final project report due
Grading
- 20% class participation
- 25% weekly reading assignment
- 10% discussion leads
- 15% individual reading assignments
- 55% project
Additional Notes
- For students who need computing resources for the class project, we recommend you to look into AWS educate program for students. You’ll get 100 dollar’s worth of sign up credit. Here’s the link .