SCALING DEEP LEARNING

Bryan Catanzaro, 13 February 2017

<ANVIDIA.

SYSTEMS FOR Al

SNARC: 1951, 40 neurons
Stochastic Neural Analog Reinforcement Computer
octnzr (Marvin Minsky) 2 Grwona

OVERVIEW

What is neural network training, computationally?
What limits scalability of neural network training?

Today’s frameworks and training approaches are limited
What can we do to overcome those limits?

Example: Persistent RNN

What is the future of systems for training neural networks?

®@ctnzr 3 NVIDIA.

WHY NEURAL NETWORKS?

Neural networks benefit Accuracy Seen Lear
from large datasets eep Learning
They’re relatively simple, so Many previous
frameworks & libraries help — thods
They fit modern computing /

hardware

>
Data & Compute

@ctnzr

@ctnzr

SCALE MATTERS

More data, more compute: More Al

IMAGE RECOGNITION

Model
152 layers
22.6 GFLOP
~3.5% error
8 layers
1.4 GFLOP

~16% Error

2012 2015
AlexNet ResNet

B Microsoft

WER

100

20

10 |

50}

_..0.
BaihEE

Noisy Dev

Clean Dev

700 1000 10000

Hours of Audio

5 <ANVIDIA

@ctnzr

Performance

10 EFlop/s

1 EFlop/s

100 PFlop/s

10 PFlop/s

1 PFlop/s

100 TFlop/s

10 TFlop/s

1 TFlop/s

100 GFlop/s

10 GFlop/s

1 GFlop/s

100 MFlop/s

LIMITS OF SCALABILITY

fastest -
supercomputer ey
..'... AA AA AL
o AAA
.. ‘
...... AAAAAA

o® A AA A ..l

... AA ll.....

.'..... AA AA A -.....l
o® L A4 "
.... aala ..l x-
o® aAl AL ..'
R - 1 GPU

1994 1996 1998 2000 2002 2004 2006 2008 2010 2012 2014 2016

® Sum

Lists

A

#1

= #500

. 20000X

Al: most important
problem

How can we use our
best computers for it?

Current best practices
use ~128 GPUs

Research problem:
how can we use 200007

6 NVIDIA

@ctnzr

y;j =1 Z’wz‘jﬂ?i
i

f(z)

DEEP NEURAL NETWORKS

One layer

0, <0
x, x>0

nonlinearity

N7/

/ \
S \\\Vlf"' Q\‘t\\'
XN~ R R

\» <), 1Y

Y07 O XRHA O 5

N NSO
ALK/ ORALKN
IR I
EIRIQERRS
AAXN O 120N
‘[,,“‘ . ‘/,,“\\v

a2

Deep Neural Network

&gﬂ&

7

NVIDIA

TRAINING NEURAL NETWORKS

Yj = / szﬂ?z

Computation dominated by dot products

Multiple inputs, multiple outputs, batch means it is compute bound

Stochastic Gradient Descent used to train models

Train 1 model: Tens of Exaflops
@ctnzr 8 <AnviDiA

@ctnzr

PARALLEL NEURAL NETWORK TRAINING

Two main strategies

Data parallelism Model Parallelism

Activations (minibatch) Neurons

Transfers gradients Transfers partial activations

Multiple models Distributed model

9 <nvIDIA

@ctnzr

PARALLEL NEURAL NETWORK TRAINING

Data parallelism I ‘I
Strengths:

Software simplicity
Large, decoupled transfers

”Relaxed” versions

Weaknesses:

Limited by optimization algorithm
and hardware

Model parallelism

Strengths:

Orthogonal to optimization

Weaknesses:

Difficult to incorporate in a
framework

Small, synchronous transfers

Limited by model size & structure

10 NVIDIA

@ctnzr

LIMITS OF DATA PARALLELISM

inefficient hardware

wall-clock time to convergence

[Greg Diamos]

mini-batch size

Primary reason: less
parameter reuse makes
computation bandwidth
bound

Secondary reason: SIMD
parallelism underutilized

IIIIIII

ROOFLINE MODEL

1000

100

Given:

§ K40: 4.2 TFlop/s
Processor BW g %%cp%\ E7-8890v2: 0.67 TFlop/s
Processor Flop/s S . \l\bp'-fl’ 66%\5
€)
You can find the Speed of Light %O’Q\\’L'
0.01 R)
Approach the roofline <
. 0.1 1 10 100 000 10000
Such simple bounds are a Operational Intensity [Flop/Byte]
powerful tool

Add vectors Matrix multiply

@ctnzr 12 NVIDIA

LIMITS OF DATA PARALLELISM

inefficient optimization Progress towards
objective per SGD step
not linear as a function
of computational work

[Greg Diamos]

Even worse:
Generalization and
accuracy empirically
suffer as minibatch
becomes too large

wall-clock time to convergence

mini-batch size

@ctnzr 13 NVIDIA

wall-clock time to convergence

@ctnzr

LIMITS OF DATA PARALLELISM

inefficient hardware

inefficient optimization

[Greg Diamos]

mini-batch size

Some amount of data parallelism
is optimum

This amount depends to change
based on:

Model
Dataset
Optimization algorithm

Generally we run at 512-2048
samples

IIIIIII

N N
— —
oo ©

217

—
o]

Time (seconds)
[\-) [\-) (-]
= &

[}
—
w

@ctnzr

LIMITS OF DATA PARALLELISM

Common range |

Synchronous data parallelism:

\ T e typically 8-32 GPUs
- 512-2048 samples

64 samples/GPU

This will vary based on:

model
dataset

optimization algorithm
GPUs processor type

Time to train one epoch
[Deep Speech 2]

15

NVIDIA

SYNCHRONOUS VERSUS ASYNCHRONOUS SGD

Parameter Server W = W - WAW
Synchronous SGD: {][][]{ }[]][

Gather all gradients together from all W
processors, then take a step Aw

Model
Replicas

DO

Asynchronous SGD:

Let model replicas learn in a decoupled SE“; ﬁ ﬁj E%j
fashion, exchange gradients more loosely aras

Asynchronous SGD with Parameter Server

@ctnzr 16 <ANVIDIA '

ASYNCHRONOUS SGD TYPES

Parameter Server [Dean, NIPS 2012]

Asynchronously update parameters

Elastic Averaging SGD [Zhang, NIPS 2015]

Communicate periodically
Hogwild [Recht, NIPS 2011]

Don’t synchronize, just overwrite parameters opportunistically.
1-bit SGD [Seide, Interspeech 2014]

Send quantized gradients around, keep residuals

®@ctnzr 17 NVIDIA.

WHY | LIKE SYNCHRONOUS SGD

Human aspect of debugging the training process requires reproducibility

Synchronous methods get the best accuracy in my experience

80%,

o
o
X

i
o
X

validation error

p=28

— allreduce

— elastic avg. (r=1)
— elastic avg. (r=10)
— gossiping

validation error

N

e

SN
o

@ctnzr

12 24 36
training time (hours)

80%

60%

40%

p =64

20%

2 4 6
training time (hours)

80%

o
o
X

validation error
D
o
X

p=128

— allreduce
— gossiping

20%

2 4 6 8
training time (hours)

[Keutzer, NIPS Workshop, 2016]

18

NVIDIA

ALL REDUCE (COLLECTIVE)

Adding gradients from all processes

GPUO GPU1 GPUZ GPU3

GPU1 GPUZ GPU3

Big messages (from big gradients)

all- reduce

Ring algorithm

Works well on most
interconnect topologies

Processes only interact with a right and left neighbor
Is interconnect bandwidth bound

Other algorithms can be used as well

@ctnzr 19 SANVIDIA.

HARDWARE TOPOLOGY

Interconnect & memory comes in hierarchies

To get best performance, you need to
map processes to hierarchy

CPU CPU
PLX PLX PLX PLX
GPU | [GPU | [GPU | [GPU GPU| [GPU | |GPU | | GPU

NUMANode P#1 (12GB)

1,0

This doesn’t happen magically
Defaults may be very bad

L2 (256KB) L2 (256KB)
hwloc is good software for this

2,0

PCl 14e4:163b Socket P#0
etho L3 (8192KB)
L2 (256KB) L2 (256KB)
PCI1 1000:0060
sda L1 (32KB) L1 (32KB)
Core P#0 Core P#1
PCl 8086:3a20
PUP#1 PUP#3
PCI 15b3:634a
PUP#5 PUP#7
b0

@ctnzr

20 <InviDIA

COMMUNICATION LIBRARIES

NCCL, MPI
NCCL: Optimized intra-node MPI: Library for inter-node
communication communication
Library with sophisticated topology CUDA-aware MPI means you can run MPI
aware collective algorithms programs using GPUs

Scalable, distributed code in a familiar
environment for HPC

A7 WPl

@ctnzr 21 <ANVIDIA.

MODEL PARALLELISM

At the moment, still exotic

Orthogonal to data parallelism (algorithmically)

But more challenging to implement

Current DL frameworks don’t support it
Distributed tensor frameworks could help Neurons
But likely to work for some models and not others

Scalability limited by model size and structure

@ctnzr 22 ANVIDIA.

PERSISTENT RNNS

Traditional RNN implementations
reload weights every timestep

This dramatically lowers the
arithmetic intensity

Making us dependent on
large batches

Limiting scale

Could we cache the weights on chip?

@ctnzr

|:I/ weights

\H/ weights

\H/ weights \H/ weights \1:|

data,

data;

data, data; data,

Persistent RNN

-

|:I/ weights

data,

data,

[YY)

data, data; data,

[Diamos, ICML 2016]

23

NVIDIA

PERSISTENT RNNS

Ooooo
Ooooo
Ooooog
Ooo0oo

weights

\DDDDDI \DDDDDI

Ooooo

\DDDDDI \DDDDDI

Ooooo
Ooooo
Ooooo

datapath

0 \DDDDDI \DDDDDI
c \DDDDDI \DDDDDI

o

thread

Largest, highest bandwidth storage

on GPU is register file

Up to 6 MB on Maxwell Titan X

Limited RNN size:
1152 neurons in 6 MB

@ctnzr

[Diamos, ICML 2016]

ga||iggl((joo{|od go|jgool(oo|co
ga||iggl((joo{|od go|jgool(oo|co
ga||iggl((joo{|od go|jgool(oo|co
ga||iggl((joo{|od go|jgool(oo|co
oo (oo)|iogjoo oof{oo|ogoo
> > > >
go(joo)\oga(ao gof(joo|iao(igo
go(joo)\og(ao gof((oo|ioo(igo
go(joo)\og(ao gof((oo|ioo(igo
go(joo)|\oga(odo gof(oo||oo(gd
ooj|iggafjoofjoo oo|joof(oojjcoo
datag GPU data; GPU
barrier

Implementing the RNN requires a
global barrier

This is somewhat difficult to achieve
on GPUs, but it is possible

24 NVIDIA

PERSISTENT RNNS

Awesome for limited size Vanilla RNNs

w
=)

PERSISTENT

N
&

N
o

TeraFLOP/s
=
Ul

=
o

o
0

o
=)

0 10 20 30 40 50 60
Mini-Batch Size

Only requires a MB of 4

300

250

200

TeraFLOP/s

100

50

0 20 40 60 80 100 120 140

GPU Count

Strong scaling

er processor to saturate . (fixed MB of 512)
PErP Now in CUDNN i
@ctnzr 25 NVIDIA

DISTRIBUTED PERSISTENT RNNS

To overcome capacity limitations, distribute the model!

This requires a global barrier between processors, not just on each processor

Possible on GPUs with NVLINK

Implemented with atomic operations and memory fences

This could overcome size limitations for RNNs (LSTMs, GRUs, etc.)

Could compose with data parallelism to scale RNN training to hundreds of GPUs

®@ctnzr 26 NVIDIA.

LIBRARIES

Optimized Kernels

Image data

CUBLAS: Linear algebra - - -

D[0,0,::] D[0,1,::] D[0,2,:]

Filter data

CUDNN: Neural network kernels

I XRI T A 2
n n n n n n

Convolutions (direct, Winograd, FFT)

QQHNNNLUWWH

Can achieve > Speed of Light! pad.w =

Recurrent Neural Networks

@ctnzr 27 SANVIDIA.

HETEROGENEOUS COMPUTING

Latency Throughput
Optimized CPU Optimized GPU
Fast Serial Processing Scalable Parallel Processing

LAWS OF PHYSICS

Successful Al will use Throughput Computing

20X in 10 years

: /

TR 3 By ——GPU TFLOPs
6t e R R L L O N
Latency Optimized Performance Throughput Optimized Performance
29 <InVIDIA.

@ctnzr

ACCELERATED COMPUTING

GPUs have always contained specialized hardware

Find economically important problem
that needs compute

Make hardware for it to take it to speed of light
GPUs will have more specialization for Al

We see that happening with arithmetic for DL

GP100 Die

@ctnzr 30 €AnNVIDIA.

HARDWARE PLATFORMS

>
<
2
>
C
r4
m
>
4
-
m
A
X

Embedded Automotive Data Center

@ctnzr 31 NVIDIA

ARITHMETIC

Mixed precision for training Lower precision integer for inference

FP32 + FP16 Int8

@ctnzr 32 <INVIDIA .

@ctnzr

FP32

FP16

Int32

Int16

Int8

NUMBER REPRESENTATION

Range

1038 - 1038

6x105 - 6x104

0 - 2x10°

0 - 6x104

0-127

Accuracy

.000006%

.05%

Va

Va

Y2

B. Dally 33 <A nviDIA .

PASCAL GP100

10 TeraFLOPS FP32
20 TeraFLOPS FP16
16GB HBM - 750GB/s
300W TDP
67GFLOPS/W (FP16)

16nm process

16OGB/S NV L]nk 34 <AnviDIA

@ctnzr

COMMUNICATION LINKS

NVLINK:
5-12X PCle bandwidth
Supports remote atomics

Supports high-bandwidth
access to CPU memory
(IBM Power)

@ctnzr

CPU

> PCle
— 0

— | P100

— | P100

!

PCle
Switch

-« >
-« e

PI00| «— | | L—

P100 | +— L—

<+—» PCle

i

PCle
Switch

P100

P100

PCle]
Switch K

P100 | «—

BIUO | «—

DGX-1

IIIIIII

SCALING DEEP LEARNING

Systems for Al have renewed importance
Scaling enables new experiments
Bigger models

Bigger datasets

Lots of work going on across the industry
to make the next generation of scaling possible

Bryan Catanzaro

@ctnzr 36 NVIDIA

<A NVIDIA.

