
Bryan Catanzaro, 13 February 2017

SCALING DEEP LEARNING



2@ctnzr

SYSTEMS FOR AI

SNARC: 1951, 40 neurons
Stochastic Neural Analog Reinforcement Computer

(Marvin Minsky)



3@ctnzr

OVERVIEW

What is neural network training, computationally?

What limits scalability of neural network training?

Today’s frameworks and training approaches are limited

What can we do to overcome those limits? 

Example: Persistent RNN

What is the future of systems for training neural networks?



4@ctnzr

WHY NEURAL NETWORKS?

1. Neural networks benefit 
from large datasets

2. They’re relatively simple, so 
frameworks & libraries help

3. They fit modern computing
hardware

Data & Compute

Accuracy
Deep Learning

Many previous 
methods



5@ctnzr

SCALE MATTERS
More data, more compute: More AI

IMAGE RECOGNITION

2012
AlexNet

2015
ResNet

152 layers
22.6 GFLOP
~3.5% error

8 layers
1.4 GFLOP
~16% Error

16X
Model



6@ctnzr

LIMITS OF SCALABILITY

AI: most important 
problem

How can we use our 
best computers for it?

Current best practices 
use ~128 GPUs

Research problem: 
how can we use 20000?

1 GPU

fastest
supercomputer

20000X



7@ctnzr

DEEP NEURAL NETWORKS
Simple function approximators

yj = f

 
X

i

wijxi

!

f(x) =

(
0, x < 0

x, x � 0

One layer

nonlinearity

x

w y

Deep Neural Network



8@ctnzr

TRAINING NEURAL NETWORKS

Computation dominated by dot products

Multiple inputs, multiple outputs, batch means it is compute bound

Stochastic Gradient Descent used to train models

yj = f

 
X

i

wijxi

! x

w y

Train 1 model: Tens of Exaflops



9@ctnzr

PARALLEL NEURAL NETWORK TRAINING

Data parallelism

Transfers gradients

Multiple models

Model Parallelism

Transfers partial activations

Distributed model

Two main strategies

NeuronsActivations (minibatch)



10@ctnzr

PARALLEL NEURAL NETWORK TRAINING

Data parallelism

Strengths:

Software simplicity

Large, decoupled transfers

”Relaxed” versions

Weaknesses:

Limited by optimization algorithm 
and hardware

Model parallelism

Strengths:

Orthogonal to optimization 

Weaknesses:

Difficult to incorporate in a 
framework

Small, synchronous transfers

Limited by model size & structure

Strengths and weaknesses



11@ctnzr

LIMITS OF DATA PARALLELISM

Primary reason: less 
parameter reuse makes 
computation bandwidth 
bound

Secondary reason: SIMD 
parallelism underutilized

Processors become inefficient as minibatch decreasesHardware limits
w

al
l-

cl
oc

k 
tim

e 
to

 c
on

ve
rg

en
ce

mini-batch size

inefficient hardware 

Hardware becomes less e�cient at small batch sizes.

Presenter: Gregory Diamos Persistent RNNs

[Greg Diamos]



12@ctnzr

ROOFLINE MODEL

Given:

Processor BW

Processor Flop/s

You can find the Speed of Light

Approach the roofline

Such simple bounds are a 
powerful tool

0.1 1 10 100 1000 10000
Operational Intensity [Flop/Byte]

0.01

0.1

1

10

100

1000

Pe
rfo

rm
an

ce
[T

Fl
op

/s
]

K40: 4.2 TFlop/s

E7-8890v2: 0.67 TFlop/s

Add vectors Matrix multiply



13@ctnzr

LIMITS OF DATA PARALLELISM

Progress towards 
objective per SGD step 
not linear as a function 
of computational work

Even worse: 
Generalization and 
accuracy empirically 
suffer as minibatch
becomes too large

Optimization algorithms fail as minibatch increasesOptimization limits

w
al

l-
cl

oc
k 

tim
e 

to
 c

on
ve

rg
en

ce

mini-batch size

inefficient optimization 

Optimization algorithms perform more work at large batch sizes.

Presenter: Gregory Diamos Persistent RNNs

[Greg Diamos]



14@ctnzr

LIMITS OF DATA PARALLELISM

Some amount of data parallelism 
is optimum

This amount depends to change 
based on:

Model

Dataset

Optimization algorithm

Generally we run at 512-2048 
samples

The elusive optimumMini-batch limits

w
al

l-
cl

oc
k 

tim
e 

to
 c

on
ve

rg
en

ce

mini-batch size

inefficient hardware inefficient optimization 

These e↵ects combine to limit the maximum number of GPUs.

Presenter: Gregory Diamos Persistent RNNs

[Greg Diamos]



15@ctnzr

LIMITS OF DATA PARALLELISM

Synchronous data parallelism: 
typically 8-32 GPUs 
512-2048 samples
64 samples/GPU

This will vary based on:

model
dataset
optimization algorithm
processor type
…

Time to train one epoch
[Deep Speech 2]

Common range



16@ctnzr

SYNCHRONOUS VERSUS ASYNCHRONOUS SGD

Synchronous SGD:

Gather all gradients together from all 
processors, then take a step

Asynchronous SGD:

Let model replicas learn in a decoupled 
fashion, exchange gradients more loosely

Asynchronous SGD with Parameter Server



17@ctnzr

ASYNCHRONOUS SGD TYPES

Parameter Server [Dean, NIPS 2012]

Asynchronously update parameters

Elastic Averaging SGD [Zhang, NIPS 2015]

Communicate periodically

Hogwild [Recht, NIPS 2011]

Don’t synchronize, just overwrite parameters opportunistically. 

1-bit SGD [Seide, Interspeech 2014]

Send quantized gradients around, keep residuals



18@ctnzr

WHY I LIKE SYNCHRONOUS SGD

Human aspect of debugging the training process requires reproducibility

Synchronous methods get the best accuracy in my experience

Simple, Reproducible, Good Convergence

[Keutzer, NIPS Workshop, 2016]



19@ctnzr

ALL REDUCE (COLLECTIVE)

Big messages (from big gradients)

Ring algorithm

Works well on most 
interconnect topologies

Processes only interact with a right and left neighbor

Is interconnect bandwidth bound

Other algorithms can be used as well

Adding gradients from all processes



20@ctnzr

HARDWARE TOPOLOGY

Interconnect & memory comes in hierarchies

To get best performance, you need to
map processes to hierarchy

This doesn’t happen magically

Defaults may be very bad

hwloc is good software for this

Mapping processes onto the machine



21@ctnzr

COMMUNICATION LIBRARIES

NCCL: Optimized intra-node 
communication

Library with sophisticated topology 
aware collective algorithms

NCCL, MPI

MPI: Library for inter-node 
communication

CUDA-aware MPI means you can run MPI 
programs using GPUs

Scalable, distributed code in a familiar 
environment for HPC



22@ctnzr

MODEL PARALLELISM

Orthogonal to data parallelism (algorithmically)

But more challenging to implement

Current DL frameworks don’t support it

Distributed tensor frameworks could help

But likely to work for some models and not others

Scalability limited by model size and structure 

At the moment, still exotic

Neurons



23@ctnzr

PERSISTENT RNNS

Traditional RNN implementations 
reload weights every timestep

This dramatically lowers the 
arithmetic intensity

Making us dependent on 
large batches

Limiting scale

Could we cache the weights on chip?

Make a bandwidth bound problem a compute bound problem
Persistent RNNs

weights

GEMM GEMM GEMM GEMM

Persistent RNN

weights

weights weights weights

data0 data1 data2 data3 data4

data0 data1 data2 data3 data4

RNNs built on GEMM routines reload the weights each timestep.
However, the weights are constant, and this is wasteful.

Presenter: Gregory Diamos Persistent RNNs

[Diamos, ICML 2016]



24@ctnzr

PERSISTENT RNNS

Largest, highest bandwidth storage 
on GPU is register file

Up to 6 MB on Maxwell Titan X

Limited RNN size: 
1152 neurons in 6 MB

ImplementationCache weights in registers

weights

GPU thread

registers

datapath

Presenter: Gregory Diamos Persistent RNNs

A global barrier

data0 GPU data1 GPU
barrier

Presenter: Gregory Diamos Persistent RNNs

Implementing the RNN requires a 
global barrier 

This is somewhat difficult to achieve 
on GPUs, but it is possible

http://github.com/baidu-
research/persistent-rnn

[Diamos, ICML 2016]



25@ctnzr

PERSISTENT RNNS
Awesome for limited size Vanilla RNNs

Only requires a MB of 4 
per processor to saturate

Strong scaling 
(fixed MB of 512)

Now in CUDNN

[Diamos, ICML 2016]



26@ctnzr

DISTRIBUTED PERSISTENT RNNS

To overcome capacity limitations, distribute the model!

This requires a global barrier between processors, not just on each processor

Possible on GPUs with NVLINK

Implemented with atomic operations and memory fences

This could overcome size limitations for RNNs (LSTMs, GRUs, etc.)

Could compose with data parallelism to scale RNN training to hundreds of GPUs

Model Parallelism FTW?



27@ctnzr

LIBRARIES

CUBLAS: Linear algebra

CUDNN: Neural network kernels

Convolutions (direct, Winograd, FFT)

Can achieve > Speed of Light!

Recurrent Neural Networks

Optimized Kernels



28@ctnzr

HETEROGENEOUS COMPUTING

Throughput 
Optimized GPU
Scalable Parallel Processing

Latency 
Optimized CPU

Fast Serial Processing



29@ctnzr

LAWS OF PHYSICS
Successful AI will use Throughput Computing

20X gap…
And growing

0.1

1

10

GPU TFLOPs

20X in 10 years

Latency Optimized Performance Throughput Optimized Performance



30@ctnzr

ACCELERATED COMPUTING

GPUs have always contained specialized hardware

Find economically important problem
that needs compute

Make hardware for it to take it to speed of light

GPUs will have more specialization for AI

We see that happening with arithmetic for DL

GP100 Die



31@ctnzr

HARDWARE PLATFORMS
Scaling from 1 – 3000 Watts: Power limited in all cases

Jetson

Embedded

Drive PX

Automotive

DGX

Data Center



32@ctnzr

ARITHMETIC

Mixed precision for training

FP32 + FP16

Lower precision integer for inference

Int8



33@ctnzr

NUMBER REPRESENTATION

FP32

FP16

Int32

Int16

Int8

S E M
1 8 23

Range Accuracy

10-38 - 1038 .000006%

6x10-5 - 6x104 .05%

0 – 2x109 ½

0 – 6x104 ½

0 – 127 ½

S E M
1 5 10

M
31

S

S M

1

1 15

S M
1 7

B. Dally



34@ctnzr

PASCAL GP100
10 TeraFLOPS FP32

20 TeraFLOPS FP16

16GB HBM – 750GB/s

300W TDP

67GFLOPS/W (FP16)

16nm process

160GB/s NV Link 



35@ctnzr

COMMUNICATION LINKS
Enabling Scalability

NVLINK:

5-12X PCIe bandwidth

Supports remote atomics

Supports high-bandwidth
access to CPU memory
(IBM Power)

DGX-1



36@ctnzr

SCALING DEEP LEARNING

Systems for AI have renewed importance

Scaling enables new experiments

Bigger models

Bigger datasets

Lots of work going on across the industry
to make the next generation of scaling possible

Bryan Catanzaro
@ctnzr




