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Introduction and 
Motivation 



Motivation and applications
Versatile framework for unsupervised and semi-supervised 
deep learning 

Representation Learning. E.g.: 

2D visualisation 

Data-efficient learning. Semi-supervised learning 

Artificial Creativity. E.g.: 

Image/text resynthesis, Molecule design 



Sad Kanye -> Happy Kanye

 “Smile vector”. Tom White, 2016, 
twitter: @dribnet



Background



Probabilistic Models
x: Observed random variables 

p*(x) or: underlying unknown process 

pθ(x): model distribution 

Goal: pθ(x) ≈ p*(x) 

We wish flexible pθ(x) 

Conditional modeling goal: pθ(x|y) ≈ p*(x|y)



Concept 1: 
Parameterization of conditional distributions 

with Neural Networks
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Concept 2: 
Generalization into Directed Models  

parameterized with Bayesian Networks



Directed graphical models / Bayesian networks

We parameterize conditionals using neural networks: 

Traditionally: parameterized using probability tables

Joint distribution factorizes as:



Maximum Likelihood (ML)
Log-probability of a datapoint x:  

Log-likelihood of i.i.d. dataset:  

Optimizable with (minibatch) SGD



Concept 3: 
Generalization into 

Deep Latent-Variable Models



Deep Latent-Variable Model (DLVM)
Introduction of latent variables in graph 

Latent-variable model pθ(x,z) 
where conditionals are parameterized with neural networks 

Advantages: 

Extremely flexible: even if each conditional is simple (e.g. 
conditional Gaussian), the marginal likelihood can be 
arbitrarily complex 

Disadvantage: 

                            is intractable



Neural Net



DLVM: Optimization is non-trivial
By direct optimization of log p(x) ? 

Intractable marg. likelihood 

With expectation maximization (EM)?  

Intractable posterior: p(z|x) = p(x,z)/p(x) 

With MAP: point estimate of p(z|x)? 

Overfits 

With trad. variational EM and MCMC-EM? 

Slow 

And none tells us how to do fast posterior inference



Variational  Autoencoders 
(VAEs)



Solution: Variational Autoencoder (VAE)
Introduce q(z|x): parametric model 
of true posterior 

Parameterized by another neural network 

Joint optimization of q(z|x) and p(x,z) 

Remarkably simple objective: 
evidence lower bound (ELBO) [MacKay, 1992]



Encoder / Approximate Posterior 
qφ(z|x): parametric model of the posterior 
φ: variational parameters 

We optimize the variational parameters φ such that: 

Like a DLVM, the inference model can be (almost) any 
directed graphical model:  
 

Note that traditionally, variational methods employ local 
variational parameters. We only have global φ
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Example

Evidence Lower Bound / ELBO

1. Maximization of log p(x) 
=> Good marginal likelihood 

2. Minimization of DKL(q(z|x)||p(z|x))  
=> Accurate (and fast) posterior inference

Objective (ELBO):

Can be rewritten as:

L(x; ✓) = E
q(z|x) [log p(x, z)� log q(z|x)]

L(x; ✓) = log p(x)�DKL(q(z|x)||p(z|x))



Stochastic Gradient Descent (SGD)
Minibatch SGD: requires unbiased gradients estimates  

Reparameterization trick for continuous latent variables 
[Kingma and Welling, 2013] 

REINFORCE for discrete latent variables 

Adam optimizer adaptively pre-conditioned SGD 
[Kingma and Ba, 2014] 

Weight normalisation for faster convergence 
[Salimans and Kingma, 2015]



ELBO as KL Divergence



Gradients
An unbiased gradient estimator of the ELBO w.r.t. the 
generative model parameters is straightforwardly obtained:  

A gradient estimator of the ELBO w.r.t. the variational 
parameters φ is more difficult to obtain:



Reparameterization Trick
Construct the following Monte Carlo estimator: 
 
 

where p(ε) and g() chosen such that z ∼ qφ(z|x) 

Which has a simple Monte Carlo gradient:



Reparameterization Trick
This is an unbiased estimator of the exact single-datapoint 
ELBO gradient:



Reparameterization Trick
Under reparameterization, density is given by: 
 

Important: choose transformations g() for which the logdet 
is computationally affordable/simple



Factorized Gaussian Posterior
A common choice is a simple factorized Gaussian encoder:  

After reparameterization, we can write: 



Factorized Gaussian Posterior
The Jacobian of the transformation is: 
 
 

Determinant of diagonal matrix is product of diag. entries. 

So the posterior density is:



Full-covariance Gaussian posterior
The factorized Gaussian posterior can be extended to a 
Gaussian with full covariance: 

A reparameterization of this distribution with a surprisingly 
simple determinant, is: 

where L is a lower (or upper) triangular matrix, with non-
zero entries on the diagonal. The off-diagonal element define 
the correlations (covariance) of the elements in z.



Full-covariance Gaussian posterior
This reason for this parameterization of the full-covariance 
Gaussian, is that the Jacobian determinant is remarkably 
simple. The Jacobian is trivial: 

And the determinant of a triangular matrix is simply the 
product of its diagonal terms. So:



Full-covariance Gaussian posterior
This parameterization corresponds to the Cholesky 
decomposition of the covariance of z:



Full-covariance Gaussian posterior
One way to construct the matrix L is as follows: 

Lmask is a masking matrix. 

The log-determinant is identical to the factorized Gaussian 
case:  
 



Full-covariance Gaussian posterior
Therefore, density equal to diagonal Gaussian case!



Beyond Gaussian 
posteriors



Normalizing Flows
Full-covariance Gaussian: 

One transformation operation: ft(ε, x) = Lε 

Normalizing flows: 

Multiple transformation steps



Normalizing Flows
Define z ~ qφ(z|x) as:  

The Jacobian of the transformation factorizes: 

And the density 

[Rezende and Mohamed, 2015]



Inverse Autoregressive Flows
Probably the most flexible type of transformation, with 
simple determinant, that can be chained. 

Each transformation given by a autoregressive neural net, 
with triangular Jacobian 

Best known way to construct arbitrarily flexible posteriors



Inverse Autoregressive Flow



Posteriors in 2D space



Deep IAF helps towards better likelihoods

[Kingma, Salimans and Welling, 2014]



Optimization Issues
Overpruning: 

Solution 1: KL annealing 

Solution 2: Free bits (see IAF paper) 

‘Blurriness’ of samples 

Solution: better Q or P models



Better generative 
models



Improving Q versus improving P



PixelVAE
Use PixelCNN models as p(x|z) and p(z) models 

No need for complicated q(z|x): just factorized Gaussian

[Gulrajani et al, 2016]



PixelVAE

[Gulrajani et al, 2016]



PixelVAE



PixelVAE



Applications



Visualisation 
of Data in 2D



Representation learning

x

z2D



Semi-supervised 
learning



SSL With Auxiliary VAE

[Maaløe et al, 2016]



Data-efficient learning on ImageNet

[Pu et al, “Variational Autoencoder for Deep Learning of Images, Labels and Captions”, 2016]

from 10% to 60% accuracy,  
for 1% labeled 



(Re)Synthesis



Analogy-makingAnalogies



Automatic chemical design
VAE trained on text representation of 250K molecules 

Uses latent space to design new drugs and organic LEDs

[Gómez-Bombarelli et al, 2016]



Semantic Editing
“Smile vector”. Tom White, 2016, twitter: @dribnet



Semantic Editing
“Smile vector”. Tom White, 2016, twitter: @dribnet



Semantic Editing
“Neural Photo Editing”. Andrew Brock et al, 2016



Questions?


