
Variational Auto-Encoders

Diederik P. Kingma

Introduction and
Motivation

Motivation and applications
Versatile framework for unsupervised and semi-supervised
deep learning

Representation Learning. E.g.:

2D visualisation

Data-efficient learning. Semi-supervised learning

Artificial Creativity. E.g.:

Image/text resynthesis, Molecule design

Sad Kanye -> Happy Kanye

 “Smile vector”. Tom White, 2016,
twitter: @dribnet

Background

Probabilistic Models
x: Observed random variables

p*(x) or: underlying unknown process

pθ(x): model distribution

Goal: pθ(x) ≈ p*(x)

We wish flexible pθ(x)

Conditional modeling goal: pθ(x|y) ≈ p*(x|y)

Concept 1:
Parameterization of conditional distributions 

with Neural Networks

Common example

0

0.45

0.9

Cat MouseDog ...

NeuralNet(x)

yx

Concept 2:
Generalization into Directed Models  

parameterized with Bayesian Networks

Directed graphical models / Bayesian networks

We parameterize conditionals using neural networks:

Traditionally: parameterized using probability tables

Joint distribution factorizes as:

Maximum Likelihood (ML)
Log-probability of a datapoint x:  

Log-likelihood of i.i.d. dataset:  

Optimizable with (minibatch) SGD

Concept 3:
Generalization into

Deep Latent-Variable Models

Deep Latent-Variable Model (DLVM)
Introduction of latent variables in graph

Latent-variable model pθ(x,z) 
where conditionals are parameterized with neural networks

Advantages:

Extremely flexible: even if each conditional is simple (e.g.
conditional Gaussian), the marginal likelihood can be
arbitrarily complex

Disadvantage:

 is intractable

Neural Net

DLVM: Optimization is non-trivial
By direct optimization of log p(x) ?

Intractable marg. likelihood

With expectation maximization (EM)?

Intractable posterior: p(z|x) = p(x,z)/p(x)

With MAP: point estimate of p(z|x)?

Overfits

With trad. variational EM and MCMC-EM?

Slow

And none tells us how to do fast posterior inference

Variational Autoencoders
(VAEs)

Solution: Variational Autoencoder (VAE)
Introduce q(z|x): parametric model 
of true posterior

Parameterized by another neural network

Joint optimization of q(z|x) and p(x,z)

Remarkably simple objective: 
evidence lower bound (ELBO) [MacKay, 1992]

Encoder / Approximate Posterior
qφ(z|x): parametric model of the posterior 
φ: variational parameters

We optimize the variational parameters φ such that: 

Like a DLVM, the inference model can be (almost) any
directed graphical model:  
 

Note that traditionally, variational methods employ local
variational parameters. We only have global φ

x

z

N

θ

Example

Evidence Lower Bound / ELBO

1. Maximization of log p(x) 
=> Good marginal likelihood

2. Minimization of DKL(q(z|x)||p(z|x))  
=> Accurate (and fast) posterior inference

Objective (ELBO):

Can be rewritten as:

L(x; ✓) = E
q(z|x) [log p(x, z)� log q(z|x)]

L(x; ✓) = log p(x)�DKL(q(z|x)||p(z|x))

Stochastic Gradient Descent (SGD)
Minibatch SGD: requires unbiased gradients estimates

Reparameterization trick for continuous latent variables 
[Kingma and Welling, 2013]

REINFORCE for discrete latent variables

Adam optimizer adaptively pre-conditioned SGD 
[Kingma and Ba, 2014]

Weight normalisation for faster convergence 
[Salimans and Kingma, 2015]

ELBO as KL Divergence

Gradients
An unbiased gradient estimator of the ELBO w.r.t. the
generative model parameters is straightforwardly obtained:

A gradient estimator of the ELBO w.r.t. the variational
parameters φ is more difficult to obtain:

Reparameterization Trick
Construct the following Monte Carlo estimator: 
 
 

where p(ε) and g() chosen such that z ∼ qφ(z|x)

Which has a simple Monte Carlo gradient:

Reparameterization Trick
This is an unbiased estimator of the exact single-datapoint
ELBO gradient:

Reparameterization Trick
Under reparameterization, density is given by: 
 

Important: choose transformations g() for which the logdet
is computationally affordable/simple

Factorized Gaussian Posterior
A common choice is a simple factorized Gaussian encoder:

After reparameterization, we can write:

Factorized Gaussian Posterior
The Jacobian of the transformation is: 
 
 

Determinant of diagonal matrix is product of diag. entries.

So the posterior density is:

Full-covariance Gaussian posterior
The factorized Gaussian posterior can be extended to a
Gaussian with full covariance:

A reparameterization of this distribution with a surprisingly
simple determinant, is:

where L is a lower (or upper) triangular matrix, with non-
zero entries on the diagonal. The off-diagonal element define
the correlations (covariance) of the elements in z.

Full-covariance Gaussian posterior
This reason for this parameterization of the full-covariance
Gaussian, is that the Jacobian determinant is remarkably
simple. The Jacobian is trivial: 

And the determinant of a triangular matrix is simply the
product of its diagonal terms. So:

Full-covariance Gaussian posterior
This parameterization corresponds to the Cholesky
decomposition of the covariance of z:

Full-covariance Gaussian posterior
One way to construct the matrix L is as follows: 

Lmask is a masking matrix.

The log-determinant is identical to the factorized Gaussian
case:  
 

Full-covariance Gaussian posterior
Therefore, density equal to diagonal Gaussian case!

Beyond Gaussian
posteriors

Normalizing Flows
Full-covariance Gaussian:

One transformation operation: ft(ε, x) = Lε

Normalizing flows:

Multiple transformation steps

Normalizing Flows
Define z ~ qφ(z|x) as:  

The Jacobian of the transformation factorizes:

And the density

[Rezende and Mohamed, 2015]

Inverse Autoregressive Flows
Probably the most flexible type of transformation, with
simple determinant, that can be chained.

Each transformation given by a autoregressive neural net,
with triangular Jacobian

Best known way to construct arbitrarily flexible posteriors

Inverse Autoregressive Flow

Posteriors in 2D space

Deep IAF helps towards better likelihoods

[Kingma, Salimans and Welling, 2014]

Optimization Issues
Overpruning:

Solution 1: KL annealing

Solution 2: Free bits (see IAF paper)

‘Blurriness’ of samples

Solution: better Q or P models

Better generative
models

Improving Q versus improving P

PixelVAE
Use PixelCNN models as p(x|z) and p(z) models

No need for complicated q(z|x): just factorized Gaussian

[Gulrajani et al, 2016]

PixelVAE

[Gulrajani et al, 2016]

PixelVAE

PixelVAE

Applications

Visualisation
of Data in 2D

Representation learning

x

z2D

Semi-supervised
learning

SSL With Auxiliary VAE

[Maaløe et al, 2016]

Data-efficient learning on ImageNet

[Pu et al, “Variational Autoencoder for Deep Learning of Images, Labels and Captions”, 2016]

from 10% to 60% accuracy,  
for 1% labeled

(Re)Synthesis

Analogy-makingAnalogies

Automatic chemical design
VAE trained on text representation of 250K molecules

Uses latent space to design new drugs and organic LEDs

[Gómez-Bombarelli et al, 2016]

Semantic Editing
“Smile vector”. Tom White, 2016, twitter: @dribnet

Semantic Editing
“Smile vector”. Tom White, 2016, twitter: @dribnet

Semantic Editing
“Neural Photo Editing”. Andrew Brock et al, 2016

Questions?

