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Recap of most important concepts
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Recap of most important concepts
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Recap of most important concepts

Recurrent Neural Networks
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Deep Bidirectional RNNs by Irsoy and Cardie
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Each memory layer passes an intermediate sequential
representation to the next.
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Better Recurrent Units

* More complex hidden unit computation in
recurrence!

* Gated Recurrent Units (GRU)
introduced by Cho et al. 2014 (see reading list)

e Main ideas:

* keep around memories to capture long distance
dependencies

* allow error messages to flow at different strengths
depending on the inputs
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GRUs

* Standard RNN computes hidden layer at next time step
directly: hy = f (W(hh)ht_l + W(h‘”)xt)

* GRU first computes an update gate (another layer)
based on current input word vector and hidden state

2 =0 (W(Z)aﬁt 4+ U(Z>ht_1>

e Compute reset gate similarly but with different weights

Tt = O (W(T)xt -+ U(T)ht_l)
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GRUs

« Update gate w=0 (W(z)xt + U(z)ht_l)
* Reset gate re=o (W(%t +U (”ht_l)

* New memory content: h: = tanh (Wa; + ry o Uhy_1)
If reset gate unit is ~0, then this ignores previous
memory and only stores the new word information

* Final memory at time step combines current and
previous time steps: hi =2z 0hse_1+ (1 — 2) 0 hy
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Attempt at a clean illustration

2t =0 (W(z)xt + U(z)ht_1>
Ty =0 (W(T)xt + U(T)ht_1>

Final memory

h; = tanh (Waxy+ri0Uhg_q)

~

h hy = hi_ 1— h
Memory (reset) h t=20hi—1+(1—2)0hy

Update gate

Reset gate

Input:

3 Richard Socher 2/1/17



GRU intuition

If reset is close to O, =0 (W(Z)l‘t T U(z)ht—1>
ignore previous hidden state re =0 (W“’)ast + U(T)ht—l)
— Allows model to drop foe = tanh (Way + o Uhy_y)

information that is irrelevant -
. ht:ZtOht_1+(1—Zt>Oht
in the future

Update gate z controls how much of past state should
matter now.

* Ifzclose to 1, then we can copy information in that unit
through many time steps! Less vanishing gradient!

Units with short-term dependencies often have reset

gates very active
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GRU intuition
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Units with long term
dependencies have active
update gates z

2t — O (W(z)xt + U(z>ht_1>
e = O (W(T)xt + U(T)ht_l)
h; = tanh (Waxy+ri0Uhg_q)

~

lllustration: -
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ht:ZtOht_1+(1—Zt>Oht

0

Derivative of 5z, T1%2 7 - rest is same chain rule, but
implement with modularization or automatic

differentiation
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Long-short-term-memories (LSTMs)
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We can make the units even more complex

Allow each time step to modify

* |Input gate (current cell matters) =0 (W(“xt + U(i)ht—l)

* Forget (gate O, forget past) ft=0 (W(f>$t + U(f)ht—l)

+  Output (how much cell is exposed) ot = o (W(O)xt + U(O)ht—l)

* New memory cell ¢; = tanh (W(C)flft + U(C)ht—l)
Final memory cell: ¢t = ft 0 ci—1 + iy 0 ¢y

Final hidden state: h: = o4 o tanh(c;)
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lllustrations all a bit overwhelming ;)
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Long Short-Term Memory by Hochreiter and Schmidhuber (1997)
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N out = f(netout)

forget =
f(netforget)

forget gate

L self-recurrent
in= f(net,) ‘ e * connection
memory cell N m— » memory cell
1114120 17 input j SE— output
http://people.idsia.ch/~juergen/Istm/sld017.htm Input gate output gate

http://deeplearning.net/tutorial/lstm.html

Intuition: memory cells can keep information intact, unless inputs makes them
forget it or overwrite it with new input.
Cell can decide to output this information or just store it
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LSTMs are currently very hip!
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En vogue default model for most sequence labeling
tasks

Very powerful, especially when stacked and made
even deeper (each hidden layer is already computed
by a deep internal network)

Most useful if you have lots and lots of data
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Summary

* Recurrent Neural Networks are powerful
* Aot of ongoing work right now

* Gated Recurrent Units even better
 LSTMs maybe even better (jury still out)

* This was an advanced lecture = gain intuition,
encourage exploration

* Next up: Recursive Neural Networks
simpler and also powerful :)
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