
Fancy	Recurrent	Neural	Networks

Richard	Socher

Material	from	cs224d.stanford.edu

Recap	of	most	important	concepts

2/1/17Richard	Socher1

Word2Vec

Glove

Nnet &	Max-margin

Recap	of	most	important	concepts

2/1/17Richard	Socher2

Multilayer	Nnet

&

Backprop

The second derivative in eq. 28 for output units is simply

@a

(n
l

)
i

@W

(n
l

�1)
ij

=
@

@W

(n
l

�1)
ij

z

(n
l

)
i

=
@

@W

(n
l

�1)
ij

⇣
W

(n
l

�1)
i· a

(n
l

�1)
⌘
= a

(n
l

�1)
j

. (46)

We adopt standard notation and introduce the error � related to an output unit:

@E

n

@W

(n
l

�1)
ij

= (y
i

� t

i

)a(nl

�1)
j

= �

(n
l

)
i

a

(n
l

�1)
j

. (47)

So far, we only computed errors for output units, now we will derive �’s for normal hidden units and
show how these errors are backpropagated to compute weight derivatives of lower levels. We will start with
second to top layer weights from which a generalization to arbitrarily deep layers will become obvious.
Similar to eq. 28, we start with the error derivative:

@E

@W

(n
l

�2)
ij

=
X

n

@E

n

@a

(n
l

)
| {z }
�

(n
l

)

@a

(n
l

)

@W

(n
l

�2)
ij

+ �W

(n
l

�2)
ji

. (48)

Now,

(�(nl

))T
@a

(n
l

)

@W

(n
l

�2)
ij

= (�(nl

))T
@z

(n
l

)

@W

(n
l

�2)
ij

(49)

= (�(nl

))T
@

@W

(n
l

�2)
ij

W

(n
l

�1)
a

(n
l

�1) (50)

= (�(nl

))T
@

@W

(n
l

�2)
ij

W

(n
l

�1)
·i a

(n
l

�1)
i

(51)

= (�(nl

))TW (n
l

�1)
·i

@

@W

(n
l

�2)
ij

a

(n
l

�1)
i

(52)

= (�(nl

))TW (n
l

�1)
·i

@

@W

(n
l

�2)
ij

f(z(nl

�1)
i

) (53)

= (�(nl

))TW (n
l

�1)
·i

@

@W

(n
l

�2)
ij

f(W (n
l

�2)
i· a

(n
l

�2)) (54)

= (�(nl

))TW (n
l

�1)
·i f

0(z(nl

�1)
i

)a(nl

�2)
j

(55)

=
⇣
(�(nl

))TW (n
l

�1)
·i

⌘
f

0(z(nl

�1)
i

)a(nl

�2)
j

(56)

=

0

@
s

l+1X

j=1

W

(n
l

�1)
ji

�

(n
l

)
j

)

1

A
f

0(z(nl

�1)
i

)

| {z }

a

(n
l

�2)
j

(57)

= �

(n
l

�1)
i

a

(n
l

�2)
j

(58)

where we used in the first line that the top layer is linear. This is a very detailed account of essentially
just the chain rule.

So, we can write the � errors of all layers l (except the top layer) (in vector format, using the Hadamard
product �):

�

(l) =
⇣
(W (l))T �(l+1)

⌘
� f 0(z(l)), (59)

7

where the sigmoid derivative from eq. 14 gives f 0(z(l)) = (1� a

(l))a(l). Using that definition, we get the
hidden layer backprop derivatives:

@

@W

(l)
ij

E

R

= a

(l)
j

�

(l+1)
i

+ �W

(l)
ij

(60)

(61)

Which in one simplified vector notation becomes:

@

@W

(l)
E

R

= �

(l+1)(a(l))T + �W

(l)
. (62)

In summary, the backprop procedure consists of four steps:

1. Apply an input x

n

and forward propagate it through the network to get the hidden and output
activations using eq. 18.

2. Evaluate �

(n
l

) for output units using eq. 42.

3. Backpropagate the �’s to obtain a �

(l) for each hidden layer in the network using eq. 59.

4. Evaluate the required derivatives with eq. 62 and update all the weights using an optimization
procedure such as conjugate gradient or L-BFGS. CG seems to be faster and work better when
using mini-batches of training data to estimate the derivatives.

If you have any further questions or found errors, please send an email to richard@socher.org

5 Recursive Neural Networks

Same as backprop in previous section but splitting error derivatives and noting that the derivatives of the
same W at each node can all be added up. Lastly, the delta’s from the parent node and possible delta’s
from a softmax classifier at each node are just added.

References

[Ben07] Yoshua Bengio. Learning deep architectures for ai. Technical report, Dept. IRO, Universite de
Montreal, 2007.

8

Recap	of	most	important	concepts

2/1/17Richard	Socher3

Recurrent	Neural	Networks

Cross	Entropy	Error

Mini-batched	SGD

Deep	Bidirectional	RNNs	by	Irsoy and	Cardie

2/1/17Richard	Socher4

Going Deep

h
! (i)
t = f (W

!"! (i)
ht
(i−1) +V

!" (i)
h
! (i)
t−1 + b
! (i)
)

h
! (i)
t = f (W

!"" (i)
ht
(i−1) +V

!" (i)
h
! (i)
t+1 + b
! (i)
)

yt = g(U[h
!
t
(L)
;h
!
t
(L)
]+ c)

y

h(3)

x
Each memory layer passes an intermediate sequential
representation to the next.

h(2)

h(1)

Better	Recurrent	Units

2/1/17Richard	Socher5

• More	complex	hidden	unit	computation	in	
recurrence!

• Gated	Recurrent	Units	(GRU)
introduced	by	Cho	et	al.	2014	(see	reading	list)

• Main	ideas:	
• keep	around	memories	to	capture	long	distance	

dependencies

• allow	error	messages	to	flow	at	different	strengths	
depending	on	the	inputs

GRUs

2/1/17Richard	Socher6

• Standard	RNN	computes	hidden	layer	at	next	time	step	
directly:

• GRU	first	computes	an	update	gate (another	layer)	
based	on	current	input	word	vector	and	hidden	state

• Compute	reset	gate	similarly	but	with	different	weights

GRUs

2/1/17Richard	Socher7

• Update	gate	

• Reset	gate

• New	memory	content:
If	reset	gate	unit	is	~0,	then	this	ignores	previous	
memory	and	only	stores	the	new	word	information	

• Final	memory	at	time	step	combines	current	and	
previous	time	steps:		

Attempt	at	a	clean	illustration

2/1/17Richard	Socher8

rtrt-1

zt-1

~ht~ht-1

zt

ht-1 ht

xtxt-1Input:

Reset	gate

Update	gate

Memory	(reset)

Final	memory

GRU	intuition

2/1/17Richard	Socher9

• If	reset	is	close	to	0,	
ignore	previous	hidden	state
à Allows	model	to	drop	
information	that	is	irrelevant
in	the	future

• Update	gate	z	controls	how	much	of	past	state	should	
matter	now.
• If	z	close	to	1,	then	we	can	copy	information	in	that	unit	

through	many	time	steps!	Less	vanishing	gradient!

• Units	with	short-term	dependencies	often	have	reset	
gates	very	active

GRU	intuition

2/1/17Richard	Socher10

• Units	with	long	term	
dependencies	have	active
update	gates	z

• Illustration:	

• Derivative	of																	?	à rest	is	same	chain	rule,	but
implement	with	modularization or	automatic	
differentiation

where ✓ is the set of the model parameters and
each (xn,yn) is an (input sequence, output se-
quence) pair from the training set. In our case,
as the output of the decoder, starting from the in-
put, is differentiable, we can use a gradient-based
algorithm to estimate the model parameters.

Once the RNN Encoder–Decoder is trained, the
model can be used in two ways. One way is to use
the model to generate a target sequence given an
input sequence. On the other hand, the model can
be used to score a given pair of input and output
sequences, where the score is simply a probability
p✓(y | x) from Eqs. (3) and (4).

2.3 Hidden Unit that Adaptively Remembers
and Forgets

In addition to a novel model architecture, we also
propose a new type of hidden unit (f in Eq. (1))
that has been motivated by the LSTM unit but is
much simpler to compute and implement.1 Fig. 2
shows the graphical depiction of the proposed hid-
den unit.

Let us describe how the activation of the j-th
hidden unit is computed. First, the reset gate rj is
computed by

rj = �

⇣

[Wrx]j +
⇥

Urhht�1i
⇤

j

⌘

, (5)

where � is the logistic sigmoid function, and [.]j
denotes the j-th element of a vector. x and ht�1

are the input and the previous hidden state, respec-
tively. Wr and Ur are weight matrices which are
learned.

Similarly, the update gate zj is computed by

zj = �

⇣

[Wzx]j +
⇥

Uzhht�1i
⇤

j

⌘

. (6)

The actual activation of the proposed unit hj is
then computed by

h

hti
j = zjh

ht�1i
j + (1� zj)

˜

h

hti
j , (7)

where

˜

h

hti
j = �

⇣

[Wx]j +
⇥

U
�

r� hht�1i
�⇤

j

⌘

. (8)

In this formulation, when the reset gate is close
to 0, the hidden state is forced to ignore the pre-
vious hidden state and reset with the current input

1 The LSTM unit, which has shown impressive results in
several applications such as speech recognition, has a mem-
ory cell and four gating units that adaptively control the in-
formation flow inside the unit, compared to only two gating
units in the proposed hidden unit. For details on LSTM net-
works, see, e.g., (Graves, 2012).

�

�� �� �

Figure 2: An illustration of the proposed hidden
activation function. The update gate z selects
whether the hidden state is to be updated with
a new hidden state ˜

h. The reset gate r decides
whether the previous hidden state is ignored. See
Eqs. (5)–(8) for the detailed equations of r, z, h
and ˜

h.

only. This effectively allows the hidden state to
drop any information that is found to be irrelevant
later in the future, thus, allowing a more compact
representation.

On the other hand, the update gate controls how
much information from the previous hidden state
will carry over to the current hidden state. This
acts similarly to the memory cell in the LSTM
network and helps the RNN to remember long-
term information. Furthermore, this may be con-
sidered an adaptive variant of a leaky-integration
unit (Bengio et al., 2013).

As each hidden unit has separate reset and up-
date gates, each hidden unit will learn to capture
dependencies over different time scales. Those
units that learn to capture short-term dependencies
will tend to have reset gates that are frequently ac-
tive, but those that capture longer-term dependen-
cies will have update gates that are mostly active.

In our preliminary experiments, we found that
it is crucial to use this new unit with gating units.
We were not able to get meaningful result with an
oft-used tanh unit without any gating.

3 Statistical Machine Translation

In a commonly used statistical machine translation
system (SMT), the goal of the system (decoder,
specifically) is to find a translation f given a source
sentence e, which maximizes

p(f | e) / p(e | f)p(f),

where the first term at the right hand side is called
translation model and the latter language model
(see, e.g., (Koehn, 2005)). In practice, however,
most SMT systems model log p(f | e) as a log-
linear model with additional features and corre-

Long-short-term-memories	(LSTMs)

2/1/17Richard	Socher11

• We	can	make	the	units	even	more	complex

• Allow	each	time	step	to	modify	
• Input	gate	(current	cell	matters)

• Forget	(gate	0,	forget	past)

• Output	(how	much	cell	is	exposed)

• New	memory	cell

• Final	memory	cell:

• Final	hidden	state:	

Illustrations	all	a	bit	overwhelming	;)

2/1/17Richard	Socher12

http://people.idsia.ch/~juergen/lstm/sld017.htm

http://deeplearning.net/tutorial/lstm.html

Intuition:	memory	cells	can	keep	information	intact,	unless	inputs	makes	them
forget	it	or	overwrite	it	with	new	input.
Cell	can	decide	to	output	this	information	or	just	store	it

Long	Short-Term	Memory	by	Hochreiter and	Schmidhuber (1997)

inj

inj
out j

out j

w ic j

wic j

yc j

g h1.0

net
w i w i

yinj yout j

net c j

g yinj

= g+sc j
sc j

yinj

h yout j

net

LSTMs	are	currently	very	hip!

2/1/17Richard	Socher13

• En	vogue	default	model	for	most	sequence	labeling	
tasks

• Very	powerful,	especially	when	stacked	and	made	
even	deeper	(each	hidden	layer	is	already	computed	
by	a	deep	internal	network)

• Most	useful	if	you	have	lots	and	lots	of	data

Summary

2/1/17Richard	Socher14

• Recurrent	Neural	Networks	are	powerful

• A	lot	of	ongoing	work	right	now

• Gated	Recurrent	Units	even	better

• LSTMs	maybe	even	better	(jury	still	out)

• This	was	an	advanced	lecture	à gain	intuition,	
encourage	exploration

• Next	up:	Recursive	Neural	Networks
simpler	and	also	powerful	:)

