Fancy Recurrent Neural Networks

Richard Socher

Material from cs224d.stanford.edu

Recap of most important concepts

Word2Vec Ji(0) =logo (ufvc) + Z [10%0 (—’“?Uc)}

j~P(w)
| RS
Ve J(0) = 5 > J(Py)(uf'v; ~ log Pyy)?
2,9=1

Nnet & Max-margin § — UTf(W:B —+ b)
J = max(0,1 — s + s.)

1 Richard Socher 2/1/17

Recap of most important concepts

Multilayer Nnet z = 21 =40
& W = ()
Backprop B = Ww®e® 4 p®@
o = f (z(3))
0

Er = 6D (T £ A ®

5 = ((W(l))T5(l+1)) O f/(Z(l))a ow O

) Richard Socher 2/1/17

Recap of most important concepts

Recurrent Neural Networks

ht — O (W(hh)ht_l -+ W(hx)x[t])
Uy = softmax (W(S)ht)
14

Cross Entropy Error J(t)(Q) = = Zyt,j log gt
j=1

Mini-batched SGD 0™¢% = 0°!¢ — oV ;.14 5(0)

3 Richard Socher 2/1/17

Deep Bidirectional RNNs by Irsoy and Cardie

SEN,

y N
RS .r

........................... ZEZL f(W(i)h(i—l) N ‘—/)(i)]_/;ii)l N B(i))
t
h(z) (1) «—(i) (i-1) —() () <)
ht=f(W ht +V hiwa+b)
—=(L) «(L)
A y, =gWUlh: ;h:]+c)
X ° ° ° °

Each memory layer passes an intermediate sequential
representation to the next.

4 Richard Socher 2/1/17

Better Recurrent Units

* More complex hidden unit computation in
recurrence!

* Gated Recurrent Units (GRU)
introduced by Cho et al. 2014 (see reading list)

e Main ideas:

* keep around memories to capture long distance
dependencies

* allow error messages to flow at different strengths
depending on the inputs

5 Richard Socher 2/1/17

GRUs

* Standard RNN computes hidden layer at next time step
directly: hy = f (W(hh)ht_l + W(h‘”)xt)

* GRU first computes an update gate (another layer)
based on current input word vector and hidden state

2 =0 (W(Z)aﬁt 4+ U(Z>ht_1>

e Compute reset gate similarly but with different weights

Tt = O (W(T)xt -+ U(T)ht_l)

6 Richard Socher 2/1/17

GRUs

« Update gate w=0 (W(z)xt + U(z)ht_l)
* Reset gate re=o (W(%t +U (”ht_l)

* New memory content: h: = tanh (Wa; + ry o Uhy_1)
If reset gate unit is ~0, then this ignores previous
memory and only stores the new word information

* Final memory at time step combines current and
previous time steps: hi =2z 0hse_1+ (1 — 2) 0 hy

7 Richard Socher 2/1/17

Attempt at a clean illustration

2t =0 (W(z)xt + U(z)ht_1>
Ty =0 (W(T)xt + U(T)ht_1>

Final memory

h; = tanh (Waxy+ri0Uhg_q)

~

h hy = hi_ 1— h
Memory (reset) h t=20hi—1+(1—2)0hy

Update gate

Reset gate

Input:

3 Richard Socher 2/1/17

GRU intuition

If reset is close to O, =0 (W(Z)l‘t T U(z)ht—1>
ignore previous hidden state re =0 (W“’)ast + U(T)ht—l)
— Allows model to drop foe = tanh (Way + o Uhy_y)

information that is irrelevant -
. ht:ZtOht_1+(1—Zt>Oht
in the future

Update gate z controls how much of past state should
matter now.

* Ifzclose to 1, then we can copy information in that unit
through many time steps! Less vanishing gradient!

Units with short-term dependencies often have reset

gates very active
Richard Socher 2/1/17

GRU intuition

10

Units with long term
dependencies have active
update gates z

2t — O (W(z)xt + U(z>ht_1>
e = O (W(T)xt + U(T)ht_l)
h; = tanh (Waxy+ri0Uhg_q)

~

lllustration: -

Z

())
(h—"

)|

ht:ZtOht_1+(1—Zt>Oht

0

Derivative of 5z, T1%2 7 - rest is same chain rule, but
implement with modularization or automatic

differentiation

Richard Socher

2/1/17

Long-short-term-memories (LSTMs)

11

We can make the units even more complex

Allow each time step to modify

* |Input gate (current cell matters) =0 (W(“xt + U(i)ht—l)

* Forget (gate O, forget past) ft=0 (W(f>$t + U(f)ht—l)

+ Output (how much cell is exposed) ot = o (W(O)xt + U(O)ht—l)

* New memory cell ¢; = tanh (W(C)flft + U(C)ht—l)
Final memory cell: ¢t = ft 0 ci—1 + iy 0 ¢y

Final hidden state: h: = o4 o tanh(c;)

Richard Socher 2/1/17

lllustrations all a bit overwhelming ;)

net, S, =S +gy" A

g gv‘“'ﬂ h hy*
O —e>0O>0—e

S\

w

ymi @ youti e
net,, net,,,
wy AN, AN

Long Short-Term Memory by Hochreiter and Schmidhuber (1997)

W

N out = f(netout)

forget =
f(netforget)

forget gate

L self-recurrent
in= f(net,) ‘ e * connection
memory cell N m— » memory cell
1114120 17 input j SE— output
http://people.idsia.ch/~juergen/Istm/sld017.htm Input gate output gate

http://deeplearning.net/tutorial/lstm.html

Intuition: memory cells can keep information intact, unless inputs makes them
forget it or overwrite it with new input.
Cell can decide to output this information or just store it

12 Richard Socher 2/1/17

LSTMs are currently very hip!

13

En vogue default model for most sequence labeling
tasks

Very powerful, especially when stacked and made
even deeper (each hidden layer is already computed
by a deep internal network)

Most useful if you have lots and lots of data

Richard Socher 2/1/17

Summary

* Recurrent Neural Networks are powerful
* Aot of ongoing work right now

* Gated Recurrent Units even better
 LSTMs maybe even better (jury still out)

* This was an advanced lecture = gain intuition,
encourage exploration

* Next up: Recursive Neural Networks
simpler and also powerful :)

14 Richard Socher 2/1/17

