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The	Limits	of	Single	Task	Learning	
• Great	performance	improvements	

• Projects	start	from	random

• Single	unsupervised	task	can’t	fix	it

• How	to	express	different	tasks	in	
the	same	framework,	e.g.
– sequence	tagging
– sentence-level	classification	
– seq2seq?



Framework	for	Tackling	NLP

A	joint	model	for	
comprehensive	

QA
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I: Mary walked to the bathroom.
I: Sandra went to the garden.
I: Daniel went back to the garden.
I: Sandra took the milk there.
Q: Where is the milk?
A: garden
I: Everybody is happy.
Q: What’s the sentiment?
A: positive

I: Jane has a baby in Dresden.
Q: What are the named entities?
A: Jane - person, Dresden - location
I: Jane has a baby in Dresden.
Q: What are the POS tags?
A: NNP VBZ DT NN IN NNP .
I: I think this model is incredible
Q: In French?
A: Je pense que ce modèle est incroyable.

Figure 1: Example inputs and questions together with answers all of which are generated by the
same dynamic memory network.

2 The Dynamic Memory Network

The Dynamic memory network (DMNs) is a general model for asking questions over inputs. The
default for the DMN is to represent inputs and their parts in vector form. In this paper, we will focus
on asking questions over natural language inputs.
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Figure 2: Overview of DMN modules. Communication between them is indicated by arrows and
uses only semantic vector representations. Questions trigger gates which allow some input words or
sentences to be given to the episodic memory module. The final state of the episodic memory is the
input to the answer module.

We will first give an overview of the model as illustrated in Fig. 2 and then describe our specific
instantiation of each module. The DMN consist of the following modules which are listed in the
order of which they are used:

Input Module: This module processes raw inputs and maps them into a representation that is useful
for asking questions about this input. Generally, the input can be visual, speech or text. In
our case the inputs are sequences of words and the representations that are being computed
are semantic vectors at every time step. For instance, this may be a long story, a movie
review, news article or all of Wikipedia.

Semantic Memory: Semantic memory stores general world knowledge about concepts and facts.
For example, it might contain information about what a hang glider is. This module is
inspired by cognitive neuroscience. While the exact location of semantic memory in the
human brain is still being explored, its general existence is well established [1]. Distributed
word vectors like Glove [2] or Word2Vec [3] form the basis of semantic memory. More
complex information can be stored in the form of knowledge bases which capture relation-
ships between various words in the form of triplets [4].

Question Module: The question module simply computes a representation of a question such as
Where did the author first fly?. This representation, in our case a vector, then triggers a
gated attention and retrieval process over facts from the input sequence.

Episodic Memory: In humans this memory stores specific experiences, times and places in their
temporal and autonoetic context. For instance, it might contain the first memory somebody
flew a hang glider. It is also a central part of the DMN. Each question draws attention to
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Dynamic Memory Networks for Visual and Textual Question Answering

Which man is dressed more
 flamboyantly ?

Answer: right

What time of day was this 
picture taken ?

Answer: night

What is the boy holding ? Answer: surfboard

Who is on both photos ? Answer: girl

What is the main color on 
the bus ?

Answer: blue

How many pink flags
are there ?

Answer: 2

What is this sculpture 
made out of ?

Answer: metal

What is the pattern on the 
cat ' s fur on its tail ?

Answer: stripes

What type of trees are in 
the background ?

Answer: pine

Did the player hit
the ball ?

Answer: yes

What color are 
the bananas ?

Answer: green

Is this in the wild ? Answer: no

Figure 4. Examples of qualitative results of attention for VQA. Each image (left) is shown with the attention that the episodic memory
module places on each region (right). Answers are given by the DMN+.

Kulkarni, G., Premraj, V., Dhar, S., Li, S., Choi, Y., Berg,
A. C., and Berg, T. L. Baby talk: Understanding and
generating image descriptions. In CVPR, 2011.

Kumar, A., Irsoy, O., Ondruska, P., Iyyer, M., Bradbury,
J., Gulrajani, I., and Socher, R. Ask Me Anything: Dy-
namic Memory Networks for Natural Language Process-
ing. arXiv preprint arXiv:1506.07285, 2015.

Li, J., Luong, M. T., and Jurafsky, D. A Hierarchical Neu-
ral Autoencoder for Paragraphs and Documents. arXiv
preprint arXiv:1506.01057, 2015.

Lin, T. Y., Maire, M., Belongie, S., Hays, J., Perona, P.,
Ramanan, D., Dollár, P., and Zitnick, C. L. Microsoft
COCO: Common Objects in Context. In ECCV 2014,
2014.

Luong, M. T., Pham, H., and Manning, C. D. Effective ap-
proaches to attention-based neural machine translation.
In EMNLP, 2015.

Ma, L., Lu, Z., and Li, H. Learning to Answer Ques-
tions From Image Using Convolutional Neural Network.
arXiv preprint arXiv:1506.00333, 2015.

Malinowski, M. and Fritz, M. A Multi-World Approach to
Question Answering about Real-World Scenes based on
Uncertain Input. In NIPS, 2014.

Malinowski, M., Rohrbach, M., and Fritz, M. Ask your
neurons: A neural-based approach to answering ques-
tions about images. In ICCV, 2015.

Noh, H., Seo, P. H., and Han, B. Image question answer-
ing using convolutional neural network with dynamic
parameter prediction. arXiv preprint arXiv:1511.05756,
2015.

Peng, B., Lu, Z., Li, H., and Wong, K. To-
wards neural network-based reasoning. arXiv preprint
arXiv:1508.05508, 2015.

I:

Q: What color are the bananas?
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First	of	Six	Major	Obstacles

• For	NLP	no	single	model	architecture with	
consistent	state	of	the	art	results	across	tasks

Task State	of	the	art	model
Question	answering	
(babI)

Strongly	Supervised	MemNN
(Weston	et	al	2015)

Sentiment	Analysis
(SST)

Tree-LSTMs	(Tai	et	al.	2015)

Part	of	speech	tagging
(PTB-WSJ)

Bi-directional	LSTM-CRF	
(Huang	et	al.	2015)	



Tackling	Obstacle	1:
Dynamic	Memory	Network
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Figure 3: Real example of an input sentence sequence and the attention gates that are triggered by a
specific question. Gate values git are shown above the corresponding vectors. The gates change with
each search over inputs. We do not draw connections for gates that are close to zero. See Section
4.1 for details on the dataset that this example comes from.

to take multiple passes over the facts, focusing attention on different facts at each pass. Each pass
produces an episode, and these episodes are then summarized into the memory. Endowing our
module with this episodic component allows its attention mechanism to attend more selectively to
specific facts on each pass, as it can attend to other important facts at a later pass. It also allows for
a type of transitive inference, since the first pass may uncover the need to retrieve additional facts.

For instance, in the example in Fig. 3, we are asked Where is the football? In the first iteration,
the model ought attend to sentence 7 (John put down the football.), as the question asks about the
football. Only once the model sees that John is relevant can it reason the second iteration should
retrieve where John was. In this example, taken from a true test question on Facebook’s bAbI task,
this behavior is indeed seen. Note that the second iteration has wrongly placed some weight in
sentence 2, which makes some intuitive sense, as sentence 2 is another place John had been.

In its general form, the episodic memory module is characterized by an attention mechanism, a
function which returns an episode given the output of the attention mechanism and the facts from
the input module, and a function that summarizes the episodes into a memory.

In our work, we use a gating function as our attention mechanism. It takes as input, for each pass i, a
candidate fact ct, a previous state mi�1, and the question q to compute a gate: git = G(ct,m

i�1

, q).
The state is updated by way of a GRU: mi

= GRU(e

i
,m

i�1

), where e

i is the computed episode at
pass i. The state may be initialized randomly, but in practice we have found that initializing it to the
question vector itself helps; e.g, m0

= q. The function G returns a single scalar and is defined as
follows:

z(c,m, q) = [c,m, q, c � q, c �m, |c� q|, |c�m|, cTW (b)
q, c

T
W

(b)
m] (3)

G(c,m, q) = �

⇣
W

(2)

tanh

⇣
W

(1)

z(c,m, q) + b

(1)

⌘
+ b

(2)

⌘
(4)

To compute the episode for pass i, we employ a modified GRU over the sequence of TC facts ct,
endowed with our gates. The episode is the final state of the GRU:

h

i
t = g

i
tGRU(ct, h

i
t�1

) + (1� g

i
t)h

i
t�1

(5)

e

i
= h

i
TC

(6)

Finally, to summarize the TP episodes e

i into a memory, we use the same GRU that updates the
attention mechanism’s state: mi

= GRU(e

i
,m

i�1

), and we set the memory m as m = m

TP . This
is equivalent to setting the memory to simply the attention mechanism’s final state, but we have de-
scribed it here as its own computation to highlight the potential modularity of these subcomponents.

For datasets that mark which facts are important for a given question, such as Facebook’s bAbI
dataset, the gates of Eq. 4 can be trained supervised with a standard cross entropy classification
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The	Modules:	Episodic	Memory
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The	Modules:	Episodic	Memory

• Gates	are	activated	if	sentence	relevant	to	the	
question	or	memory

• When	the	end	of	the	input	is	reached,	the	
relevant	facts	are	summarized	in	another	GRU

𝑧"# = [𝑠" ∘ 𝑞	; 𝑠" ∘ 𝑚#+,; |𝑠" − 𝑞|	; |𝑠" − 𝑚#+,|]



Related	work
• Sequence	to	Sequence	(Sutskever et	al.	2014)
• Neural	Turing	Machines	(Graves	et	al.	2014)
• Teaching	Machines	to	Read	and	Comprehend	(Hermann	et	al.	2015)
• Learning	to	Transduce	with	Unbounded	Memory	(Grefenstette 2015)
• Structured	Memory	for	Neural	Turing	Machines	(Wei	Zhang	2015)

• Memory	Networks	(Weston	et	al.	2015)
• End	to	end	memory	networks	(Sukhbaatar et	al.	2015)

àMain	difference:	Sequence	models	for	all	functions	in	DMN,	
allowing	for	greater	generality	of	tasks	that	be	”answered”



Comparison	to	MemNets
Similarities:
• MemNets and	DMNs	have	input,	scoring,	attention	and	response	

mechanisms
Differences:
• For	input	representations	MemNets use	bag	of	word,	nonlinear	or	

linear	embeddings	that	explicitly	encode	position	
• MemNets iteratively	run	functions	for	attention	and	response

• DMNs	show	that	neural	sequence	models	can	be	used	for	
input	representation,	attention	and	response	mechanisms	
à naturally	captures	position	and	temporality

• Enables	broader	range	of	applications



Analysis	of	Number	of	Episodes
• How	many	attention	+	memory	passes	are	needed	
in	the	episodic	memory?	

• Results	on	Babi	dataset	and	Stanford	Sentiment
Ask Me Anything: Dynamic Memory Networks for Natural Language Processing

Model Acc (%)

SVMTool 97.15
Sogaard 97.27
Suzuki et al. 97.40
Spoustova et al. 97.44
SCNN 97.50

DMN 97.56
Table 3. Test accuracies on WSJ-PTB

corporate tree structure in the retrieval process.

4.3. Sequence Tagging: Part-of-Speech Tagging

Part-of-speech tagging is traditionally modeled as a se-
quence tagging problem: every word in a sentence is to
be classified into its part-of-speech class (see Fig. 1). We
evaluate on the standard Wall Street Journal dataset (Mar-
cus et al., 1993). We use the standard splits of sections
0-18 for training, 19-21 for development and 22-24 for test
sets (Søgaard, 2011). Since this is a word level tagging
task, DMN memories are classified at each time step corre-
sponding to each word. This is described in detail in Sec-
tion 2.4’s discussion of sequence modeling.

We compare the DMN with the results in (Søgaard, 2011).
The DMN achieves state-of-the-art accuracy with a single
model, reaching a development set accuracy of 97.5. En-
sembling the top 4 development models, the DMN gets to
97.58 dev and 97.56 test accuracies, achieving a slightly
higher new state-of-the-art (Table 3).

4.4. Quantitative Analysis of Episodic Memory Module

The main novelty of the DMN architecture is in its episodic
memory module. Hence, we analyze how important the
episodic memory module is for NLP tasks and in particular
how the number of passes over the input affect accuracy.

Table 4 shows the accuracies on a subset of bAbI tasks as
well as on the Stanford Sentiment Treebank. We note that
for several of the hard reasoning tasks, multiple passes over
the inputs are crucial to achieving high performance. For
sentiment the differences are smaller. However, two passes
outperform a single pass or zero passes. In the latter case,
there is no episodic memory at all and outputs are passed
directly from the input module to the answer module. We
note that, especially complicated examples are more of-
ten correctly classified with 2 passes but many examples
in sentiment contain only simple sentiment words and no
negation or misleading expressions. Hence the need to have
a complicated architecture for them is small. The same is
true for POS tagging. Here, differences in accuracy are less
than 0.1 between different numbers of passes.

Next, we show that the additional correct classifications are

Max
passes

task 3
three-facts

task 7
count

task 8
lists/sets

sentiment
(fine grain)

0 pass 0 48.8 33.6 50.0
1 pass 0 48.8 54.0 51.5
2 pass 16.7 49.1 55.6 52.1
3 pass 64.7 83.4 83.4 50.1
5 pass 95.2 96.9 96.5 N/A

Table 4. Effectiveness of episodic memory module across tasks.
Each row shows the final accuracy in term of percentages with
a different maximum limit for the number of passes the episodic
memory module can take. Note that for the 0-pass DMN, the
network essential reduces to the output of the attention module.

hard examples with mixed positive/negative vocabulary.

4.5. Qualitative Analysis of Episodic Memory Module

Apart from a quantitative analysis, we also show qualita-
tively what happens to the attention during multiple passes.
We present specific examples from the experiments to illus-
trate that the iterative nature of the episodic memory mod-
ule enables the model to focus on relevant parts of the input.
For instance, Table 5 shows an example of what the DMN
focuses on during each pass of a three-iteration scan on a
question from the bAbI dataset.

We also evaluate the episodic memory module for senti-
ment analysis. Given that the DMN performs well with
both one iteration and two iterations, we study test exam-
ples where the one-iteration DMN is incorrect and the two-
episode DMN is correct. Looking at the sentences in Fig. 4
and 5, we make the following observations:

1. The attention of the two-iteration DMN is generally
much more focused compared to that of the one-
iteration DMN. We believe this is due to the fact that
with fewer iterations over the input, the hidden states
of the input module encoder have to capture more of
the content of adjacent time steps. Hence, the atten-
tion mechanism cannot only focus on a few key time
steps. Instead, it needs to pass all necessary informa-
tion to the answer module from a single pass.

2. During the second iteration of the two-iteration DMN,
the attention becomes significantly more focused on
relevant key words and less attention is paid to strong
sentiment words that lose their sentiment in context.
This is exemplified by the sentence in Fig. 5 that in-
cludes the very positive word ”best.” In the first iter-
ation, the word ”best” dominates the attention scores
(darker color means larger score). However, once its
context, ”is best described”, is clear, its relevance is
diminished and ”lukewarm” becomes more important.

We conclude that the ability of the episodic memory mod-
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Ask Me Anything: Dynamic Memory Networks for Natural Language Processing

Question: Where was Mary before the Bedroom?
Answer: Cinema.

Facts Episode 1 Episode 2 Episode 3

Yesterday Julie traveled to the school.
Yesterday Marie went to the cinema.
This morning Julie traveled to the kitchen.
Bill went back to the cinema yesterday.
Mary went to the bedroom this morning.
Julie went back to the bedroom this afternoon.
[done reading]

Table 5. An example of what the DMN focuses on during each episode on a real query in the bAbI task. Darker colors mean that the
attention weight is higher.

Figure 4. Attention weights for sentiment examples that were
only labeled correctly by a DMN with two episodes. The y-axis
shows the episode number. This sentence demonstrates a case
where the ability to iterate allows the DMN to sharply focus on
relevant words.

ule to perform multiple passes over the data is beneficial. It
provides significant benefits on harder bAbI tasks, which
require reasoning over several pieces of information or
transitive reasoning. Increasing the number of passes also
slightly improves the performance on sentiment analysis,
though the difference is not as significant. We did not at-
tempt more iterations for sentiment analysis as the model
struggles with overfitting with three passes.

Figure 5. These sentence demonstrate cases where initially posi-
tive words lost their importance after the entire sentence context
became clear either through a contrastive conjunction (”but”) or a
modified action ”best described.”

5. Conclusion
The DMN model is a potentially general architecture for a
variety of NLP applications, including classification, ques-
tion answering and sequence modeling. A single architec-
ture is a first step towards a single joint model for multi-
ple NLP problems. The DMN is trained end-to-end with
one, albeit complex, objective function. Future work will
explore additional tasks, larger multi-task models and mul-
timodal inputs and questions.

• Sharper	attention	when	2	passes	are	allowed.	
• Examples	that	are	wrong	with	just	one	pass
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attention	to	words	more	relevant	for	final	prediction
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Abstract
Neural network architectures with memory and
attention mechanisms exhibit certain reason-
ing capabilities required for question answering.
One such architecture, the dynamic memory net-
work (DMN), obtained high accuracy on a vari-
ety of language tasks. However, it was not shown
that the architecture achieves strong results for
question answering when supporting facts are not
marked during training or whether the question
answering capability could be applied to other
modalities such as images. We analyze the DMN
on the question answering task without support-
ing fact labels. Based on this analysis, we pro-
pose several improvements to the memory and
input modules. Together with these changes we
introduce a novel input module for images in
order to be able to answer questions about im-
ages. Our new DMN+ model improves the state
of the art on both the Visual Question Answering
(VQA) dataset and the bAbI-10k text question-
answering dataset.

1. Introduction
Neural network based methods have made tremendous
progress in image and text classification (Krizhevsky et al.,
2012; Socher et al., 2013b). However, only recently has
progress been made on more complex tasks that require
logical reasoning. This success is based in part on the
addition of memory and attention components to complex
neural networks. For instance, memory networks (Weston
et al., 2015b) are able to reason over several facts written in
natural language or (subject, relation, object) triplets. At-
tention mechanisms have been successful components in
both machine translation (Bahdanau et al., 2015; Luong
et al., 2015) and image captioning models (Xu et al., 2015).

The dynamic memory network (Kumar et al., 2015)

Proceedings of the 33 rd International Conference on Machine
Learning, New York, NY, USA, 2016. JMLR: W&CP volume
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(a) Text Question-Answering (b) Visual Question-Answering

 John moved to the 
garden.
 John got the apple there.
 John moved to the 
kitchen.
 Sandra picked up the 
milk there.
 John dropped the apple.
 John moved to the 
office.

Where is 
the 
apple?

Kitchen

What kind 
of tree is 
in the 
backgrou
nd?

Palm

Figure 1. Question Answering over text and images using a Dy-
namic Memory Network.

(DMN) is one example of a neural network model that has
both a memory component and an attention mechanism.
The DMN yields state of the art results on question an-
swering with supporting facts labeled during training, sen-
timent analysis, and part-of-speech tagging. Its main idea
is to use a question to selectively pay attention to textual
inputs. These inputs are then given to an episodic memory
module which collects the relevant inputs in order to give
an answer. The memory module has two important steps:
(1) computing attention scores to focus on particular facts
given a question and (2) updating the memory by reasoning
over the attended facts.

We analyze the DMN components, specifically the input
module and memory module, to improve accuracy over
question answering. We propose a new input module which
uses a two level encoder with a sentence reader and input
fusion layer to allow for information flow between sen-
tences. For the memory, we propose a modification to gated
recurrent units (GRU) (Chung et al., 2014). The gates in
the new GRU formulation are dependent on the attention
scores and global knowledge over the facts. Unlike be-
fore, the new DMN+ model does not require that support-
ing facts (i.e. the facts that are relevant for answering a
particular question) are labeled during training. The model
learns to pick the important facts from a larger set.

In addition, we introduce a new input module to represent
images. This module is compatible with the rest of the
DMN architecture and its output is fed into the memory
module. We show that the changes in the memory module

Dynamic	Memory	Networks	for	Visual	and	Textual	Question	Answering,	
Caiming Xiong,	Stephen	Merity,	Richard	Socher
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the hidden state to retain and how much should be updated
with the transformed input xi from the current timestep. As
ui is computed using only the current input and the hidden
state from previous timesteps, it lacks any knowledge from
the question or previous episode memory.

We propose replacing the update gates ui in the GRU with
the output of the attention gates gti . As the input to the up-
date gate can be more detailed, we speculate it allows bet-
ter informed update decisions. Additionally, the attention
based GRU can now take positional and ordering informa-
tion of facts into account, which the soft attention model
cannot do. To produce the contextual vector c

t used for
updating the episodic memory state m

t, we use the final
hidden state of the attention based GRU.

Episode Memory Updates

After each pass through the attention mechanism, we wish
to update the episode memory m

t�1 with the newly con-
structed contextual vector ct, producing m

t. In the DMN,
a GRU with the initial hidden state set to the question vec-
tor q is used for this purpose. The episodic memory for
pass t is computed by

m

t
= GRU(c

t
,m

t�1
) (4)

The work of Sukhbaatar et al. (2015) suggests that using
different weights for each pass through the episodic mem-
ory may be advantageous. When the model contains only
one set of weights for multiple episodic passes, it is re-
ferred to as a tied model. For untied experiments where
each pass through the episodic memory module has inde-
pendent weights, the GRU makes less sense for memory
updates. Following the memory update component used in
Sukhbaatar et al. (2015) and Peng et al. (2015) we experi-
ment with using a ReLU layer for memory update, calcu-
lating the new episode memory state by

m

t
= ReLU

�
W [m

t�1
; c

t
; q] + b

�
(5)

3. DMN Input Module for VQA
To apply the DMN to visual question answering, we intro-
duce a new input module for images. The module splits
an image into small local regions and considers each re-
gion equivalent to a sentence in the input module for text.
The input module for VQA is composed of three parts, il-
lustrated in Fig. 3: local region feature extraction, visual
feature embedding, and the input fusion layer introduced
in Sec. 2.2.

Local region feature extraction: To extract features
from the image, we use a convolutional neural network
(Krizhevsky et al., 2012; Szegedy et al., 2015) based upon
the VGG-19 model (Simonyan & Zisserman, 2014). We
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Figure 3. VQA input module to represent images for the DMN.

first rescale the input image to 448⇥ 448 and take the out-
put from the last pooling layer which has dimensionality
d = 512 ⇥ 14 ⇥ 14. The pooling layer divides the image
into a grid of 14⇥14, resulting in 196 local regional vectors
of d = 512.

Visual feature embedding: As the VQA task involves
both image features and text features, we add a linear layer
with tanh activation to project the d = 512 local regional
vectors to the textual feature space used by the question
vector q.

Input fusion layer: The local regional vectors extracted
from above do not yet have global information available
to them. Without global information, their representational
power is quite limited, with simple issues like object scal-
ing or locational variance causing accuracy problems.

To solve this, we add an input fusion layer similar to that
of the textual input module described in Sec. 2.2. First,
to produce the input facts F , we traverse the image in a
snake like fashion, as seen in Figure 3. We then apply a
bi-directional GRU over these input facts F to produce the
globally aware input facts

 !
F . The bi-directional GRU al-

lows for information propagation from neighboring image
patches. As the bi-directional GRU is one dimensional and
the original image 2D, some spatial information may be
difficult to capture.

4. Related Work
The DMN is related to two major lines of recent work:
memory and attention mechanisms. We work on both vi-
sual and textual question answering which have, until now,
been developed in separate communities.

Neural Memory Models The earliest recent work with a
memory component that is applied to language processing
is that of memory networks (Weston et al., 2015b) which
adds a memory component for question answering over
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Task DMN+ E2E NR
2: 2 supporting facts 0.3 0.3 -
3: 3 supporting facts 1.1 2.1 -
5: 3 argument relations 0.5 0.8 -
6: yes/no questions 0.0 0.1 -
7: counting 2.4 2.0 -
8: lists/sets 0.0 0.9 -
9: simple negation 0.0 0.3 -
11: basic coreference 0.0 0.1 -
14: time reasoning 0.2 0.1 -
16: basic induction 45.3 51.8 -
17: positional reasoning 4.2 18.6 0.9
18: size reasoning 2.1 5.3 -
19: path finding 0.0 2.3 1.6
Mean error (%) 2.8 4.2 -
Failed tasks (err >5%) 1 3 -

Table 2. Test error rates of various model architectures on tasks
from the the bAbI English 10k dataset. E2E = End-To-End Mem-
ory Network results from Sukhbaatar et al. (2015). NR = Neu-
ral Reasoner with original auxiliary task from Peng et al. (2015).
DMN+ and E2E achieve an error of 0 on bAbI question sets
(1,4,10,12,13,15,20).

state of the art question answering architectures: the end to
end memory network (E2E) (Sukhbaatar et al., 2015) and
the neural reasoner framework (NR) (Peng et al., 2015).
Neither approach use supporting facts for training.

The end-to-end memory network is a form of memory net-
work (Weston et al., 2015b) tested on both textual ques-
tion answering and language modeling. The model features
both explicit memory and a recurrent attention mechanism.
We select the model from the paper that achieves the low-
est mean error over the bAbI-10k dataset. This model uti-
lizes positional encoding for input, RNN-style tied weights
for the episode module, and a ReLU non-linearity for the
memory update component.

The neural reasoner framework is an end-to-end trainable
model which features a deep architecture for logical rea-
soning and an interaction-pooling mechanism for allowing
interaction over multiple facts. While the neural reasoner
framework was only tested on QA17 and QA19, these were
two of the most challenging question types at the time.

In Table 2 we compare the accuracy of these question an-
swering architectures, both as mean error and error on in-
dividual tasks. The DMN+ model reduces mean error by
1.4% compared to the the end-to-end memory network,
achieving a new state of the art for the bAbI-10k dataset.

One notable deficiency in our model is that of QA16: Ba-
sic Induction. In Sukhbaatar et al. (2015), an untied model
using only summation for memory updates was able to
achieve a near perfect error rate of 0.4. When the memory

test-dev test-std
Method All Y/N Other Num All
VQA
Image 28.1 64.0 3.8 0.4 -
Question 48.1 75.7 27.1 36.7 -
Q+I 52.6 75.6 37.4 33.7 -
LSTM Q+I 53.7 78.9 36.4 35.2 54.1
ACK 55.7 79.2 40.1 36.1 56.0
iBOWIMG 55.7 76.5 42.6 35.0 55.9
DPPnet 57.2 80.7 41.7 37.2 57.4
D-NMN 57.9 80.5 43.1 37.4 58.0
SAN 58.7 79.3 46.1 36.6 58.9
DMN+ 60.3 80.5 48.3 36.8 60.4

Table 3. Performance of various architectures and approaches on
VQA test-dev and test-standard data. VQA numbers are from
Antol et al. (2015); ACK Wu et al. (2015);iBOWIMG -Zhou
et al. (2015);DPPnet - Noh et al. (2015); D-NMN - Andreas et al.
(2016); SAN -Yang et al. (2015)

update was replaced with a linear layer with ReLU activa-
tion, the end-to-end memory network’s overall mean error
decreased but the error for QA16 rose sharply. Our model
experiences the same difficulties, suggesting that the more
complex memory update component may prevent conver-
gence on certain simpler tasks.

The neural reasoner model outperforms both the DMN and
end-to-end memory network on QA17: Positional Reason-
ing. This is likely as the positional reasoning task only
involves minimal supervision - two sentences for input,
yes/no answers for supervision, and only 5,812 unique ex-
amples after removing duplicates from the initial 10,000
training examples. Peng et al. (2015) add an auxiliary task
of reconstructing both the original sentences and question
from their representations. This auxiliary task likely im-
proves performance by preventing overfitting.

6.3. Comparison to state of the art using VQA

For the VQA dataset, each question is answered by mul-
tiple people and the answers may not be the same, the
generated answers are evaluated using human consensus.
For each predicted answer ai for the ith question with
target answer set T i, the accuracy of VQA: AccV QA =

1
N

PN
i=1 min(

P
t2Ti 1(ai==t)

3 , 1) where 1(·) is the indica-
tor function. Simply put, the answer ai is only 100% accu-
rate if at least 3 people provide that exact answer.

Training Details We use the Adam optimizer (Kingma &
Ba, 2014) with a learning rate of 0.003 and batch size of
100. Training runs for up to 256 epochs with early stop-
ping if the validation loss has not improved in the last 10
epochs. For weight initialization, we sampled from a ran-
dom uniform distribution with range [�0.08, 0.08]. Both

VQA	test-dev and	
test-standard:
• Antol et	al.	(2015)
• ACK	Wu	et	al.	(2015);
• iBOWIMG - Zhou	et	al.	

(2015);
• DPPnet - Noh	et	al.	

(2015);	D-NMN	- Andreas	
et	al.	(2016);	

• SAN	- Yang	et	al.	(2015)	
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Which man is dressed more
 flamboyantly ?

Answer: right

What time of day was this 
picture taken ?

Answer: night

What is the boy holding ? Answer: surfboard

Who is on both photos ? Answer: girl

What is the main color on 
the bus ?

Answer: blue

How many pink flags
are there ?

Answer: 2

What is this sculpture 
made out of ?

Answer: metal

What is the pattern on the 
cat ' s fur on its tail ?

Answer: stripes

What type of trees are in 
the background ?

Answer: pine

Did the player hit
the ball ?

Answer: yes

What color are 
the bananas ?

Answer: green

Is this in the wild ? Answer: no

Figure 4. Examples of qualitative results of attention for VQA. Each image (left) is shown with the attention that the episodic memory
module places on each region (right). Answers are given by the DMN+.
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Obstacle	2:	Joint	Many-task	Learning

• Fully	joint	multitask	learning*	is	hard:
– Usually	restricted	to	lower	layers
– Usually	helps	only	if	tasks	are	related
– Often	hurts	performance	if	tasks	are	not	related

*	meaning:	same	decoder/classifier	
and	not	only	transfer	learning	with	source
target	task	pairs



Tackling	Joint	Training

• A	Joint	Many-Task	Model:
Growing	a	Neural	Network	for	Multiple	NLP	Tasks
Kazuma Hashimoto,	
Caiming Xiong,	
Yoshimasa Tsuruoka &	
Richard	Socher

• Final	Model	à
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Figure 1: Overview of the joint many-task model predicting different linguistic outputs at succes-
sively deeper layers

2 THE JOINT MANY-TASK MODEL

In this section, we assume that the model is trained and describe its inference procedure. We begin
at the lowest level and work our way to higher layers and more complex tasks.

2.1 WORD REPRESENTATIONS

For each word w

t

in the input sentence s of length L, we construct a representation by concatenating
a word and a character embedding.

Word embeddings: We use Skip-gram (Mikolov et al., 2013) to train a word embedding matrix,
which will be shared across all of the tasks. The words which are not included in the vocabulary are
mapped to a special UNK token.

Character n-gram embeddings: Character n-gram embeddings are learned using the same skip-
gram objective function as the word vectors. We construct the vocabulary of the character n-grams in
the training data and assign an embedding for each character n-gram. The final character embedding
is the average of the unique character n-gram embeddings of a word w

t

.1 For example, the character
n-grams (n = 1, 2, 3) of the word “Cat” are {C, a, t, #BEGIN#C, Ca, at, t#END#, #BEGIN#Ca,
Cat, at#END#}, where “#BEGIN#” and “#END#” represent the beginning and the end of each
word, respectively. The use of the character n-gram embeddings efficiently provides morphological
features and information about unknown words. The training procedure for character n-grams is
described in Section 3.1. Each word is subsequently represented as x

t

, the concatenation of its
corresponding word and character vectors.

2.2 WORD-LEVEL TASK: POS TAGGING

The first layer of the model is a bi-directional LSTM (Graves & Schmidhuber, 2005; Hochreiter &
Schmidhuber, 1997) whose hidden states are used to predict POS tags. We use the following Long
Short-Term Memory (LSTM) units for the forward direction:
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1Wieting et al. (2016) used a nonlinearity, but we have observed that the simple averaging also works well.
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Model	Details
• Include	character	n-grams	and	short-circuits
• State	of	the	art	purely	feedforward	parser
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Figure 2: Overview of the POS tagging and chunking tasks in the first and second layers of the JMT
model.

where we define the input g

t

as g

t

= [

�!
h

t�1;xt

], i.e. the concatenation of the previous hidden state
and the word representation of w

t

. The backward pass is expanded in the same way, but a different
set of weights are used.

For predicting the POS tag of w

t

, we use the concatenation of the forward and backward states in a
one-layer bi-LSTM layer corresponding to the t-th word: h

t

= [

�!
h

t

;

 �
h

t

]. Then each h

t

(1  t  L)

is fed into a standard softmax classifier with a single ReLU layer which outputs the probability
vector y

(1) for each of the POS tags.

2.3 WORD-LEVEL TASK: CHUNKING

Chunking is also a word-level classification task which assigns a chunking tag (B-NP, I-VP, etc.)
for each word. The tag specifies the region of major phrases (or chunks) in the sentence.

Chunking is performed in the second bi-LSTM layer on top of the POS layer. When stacking the
bi-LSTM layers, we use Eq. (1) with input g

(2)
t

= [h

(2)
t�1;h

(1)
t

;x

t

; y

(pos)
t

], where h

(1)
t

is the hidden
state of the first (POS) layer. We define the weighted label embedding y

(pos)
t

as follows:

y
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t

=

CX

j=1

p(y

(1)
t

= j|h(1)
t

)`(j), (2)

where C is the number of the POS tags, p(y

(1)
t

= j|h(1)
t

) is the probability value that the j-th POS
tag is assigned to w

t

, and `(j) is the corresponding label embedding. The probability values are
automatically predicted by the POS layer working like a built-in POS tagger, and thus no gold POS
tags are needed. This output embedding can be regarded as a similar feature to the K-best POS tag
feature which has been shown to be effective in syntactic tasks (Andor et al., 2016; Alberti et al.,
2015). For predicting the chunking tags, we employ the same strategy as POS tagging by using the
concatenated bi-directional hidden states h

(2)
t

= [

�!
h

(2)
t

;

 �
h

(2)
t

] in the chunking layer. We also use a
single ReLU hidden layer before the classifier.

2.4 SYNTACTIC TASK: DEPENDENCY PARSING

Dependency parsing identifies syntactic relationships (such as an adjective modifying a noun) be-
tween pairs of words in a sentence. We use the third bi-LSTM layer on top of the POS and chunk-
ing layers to classify relationships between all pairs of words. The input vector for the LSTM
includes hidden states, word representations, and the label embeddings for the two previous tasks:
g

(3)
t

= [h

(3)
t�1;h

(2)
t

;x

t

; (y

(pos)
t

+ y

(chk)
t

)], where we computed the chunking vector in a similar
fashion as the POS vector in Eq. (2). The POS and chunking tags are commonly used to improve
dependency parsing (Attardi & DellOrletta, 2008).

Like a sequential labeling task, we simply predict the parent node (head) for each word in the
sentence. Then a dependency label is predicted for each of the child-parent node pairs. To predict
the parent node of the t-th word w

t

, we define a matching function between w

t

and the candidates

of the parent node as m (t, j) = h

(3)
t

T
W

d

h

(3)
j

, where W

d

is a parameter matrix. For the root, we
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Figure 3: Overview of dependency parsing in the third layer of the JMT model.
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Figure 4: Overview of the semantic tasks in the top layers of the JMT model.

define h

(3)
L+1 = r as a parameterized vector. To compute the probability that w

j

(or the root node) is
the parent of w

t

, the scores are normalized:

p(j|h(3)
t

) =

exp (m (t, j))

P
L+1
k=1,k 6=t

exp (m (t, k))

, (3)

where L is the sentence length.

Next, the dependency labels are predicted using [h

(3)
t

;h

(3)
j

] as input to a standard softmax classifier
with a single ReLU layer. At test time, we greedily select the parent node and the dependency label
for each word in the sentence.2 At training time, we use the gold child-parent pairs to train the label
predictor.

2.5 SEMANTIC TASK: SEMANTIC RELATEDNESS

The next two tasks model the semantic relationships between two input sentences. The first task
measures the semantic relatedness between two sentences. The output is a real-valued relatedness
score for the input sentence pair. The second task is a textual entailment task, which requires one
to determine whether a premise sentence entails a hypothesis sentence. There are typically three
classes: entailment, contradiction, and neutral.

The two semantic tasks are closely related to each other. If the semantic relatedness between two
sentences is very low, they are unlikely to entail each other. Based on this intuition and to make use
of the information from lower layers, we use the fourth and fifth bi-LSTM layer for the relatedness
and entailment task, respectively.

2This method currently assumes that each word has only one parent node, but it can be expanded to handle
multiple parent nodes, which leads to cyclic graphs.
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define h

(3)
L+1 = r as a parameterized vector. To compute the probability that w

j

(or the root node) is
the parent of w

t

, the scores are normalized:

p(j|h(3)
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) =

exp (m (t, j))
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, (3)

where L is the sentence length.

Next, the dependency labels are predicted using [h

(3)
t

;h

(3)
j

] as input to a standard softmax classifier
with a single ReLU layer. At test time, we greedily select the parent node and the dependency label
for each word in the sentence.2 At training time, we use the gold child-parent pairs to train the label
predictor.

2.5 SEMANTIC TASK: SEMANTIC RELATEDNESS

The next two tasks model the semantic relationships between two input sentences. The first task
measures the semantic relatedness between two sentences. The output is a real-valued relatedness
score for the input sentence pair. The second task is a textual entailment task, which requires one
to determine whether a premise sentence entails a hypothesis sentence. There are typically three
classes: entailment, contradiction, and neutral.

The two semantic tasks are closely related to each other. If the semantic relatedness between two
sentences is very low, they are unlikely to entail each other. Based on this intuition and to make use
of the information from lower layers, we use the fourth and fifth bi-LSTM layer for the relatedness
and entailment task, respectively.

2This method currently assumes that each word has only one parent node, but it can be expanded to handle
multiple parent nodes, which leads to cyclic graphs.
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We call the second regularization term �k✓
e

� ✓

0
e

k2 a successive regularization term. The successive
regularization is based on the idea that we do not want the model to forget the information learned
for the other tasks. In the case of POS tagging, the regularization is applied to ✓

e

, and ✓

0
e

is the
embedding parameter after training the final task in the top-most layer at the previous training epoch.
� is a hyperparameter.

3.3 TRAINING THE CHUNKING LAYER

The objective function is defined as follows:

�
X

s

X

t

log p(y

(2)
t

= ↵|h(2)
t

) + �kWchunkk2
+ �k✓POS � ✓

0
POSk2

, (7)

which is similar to that of POS tagging, and ✓chunk is (Wchunk, bchunk, EPOS, ✓

e

), where Wchunk

and bchunk are the weight and bias parameters including those in ✓POS, and EPOS is the set of the
POS label embeddings. ✓

0
POS is the one after training the POS layer at the current training epoch.

3.4 TRAINING THE DEPENDENCY LAYER

The objective function is defined as follows:

�
X

s

X
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log p(↵|h(3)
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, (8)

where p(↵|h(3)
t

) is the probability value assigned to the correct parent node ↵ for w

t

, and
p(�|h(3)

t

, h

(3)
↵

) is the probability value assigned to the correct dependency label � for the child-
parent pair (w

t

, ↵). ✓dep is defined as (Wdep, bdep, W

d

, r, EPOS, Echunk, ✓e

), where Wdep and bdep

are the weight and bias parameters including those in ✓chunk, and Echunk is the set of the chunking
label embeddings.

3.5 TRAINING THE RELATEDNESS LAYER

Following Tai et al. (2015), the objective function is defined as follows:
X
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(9)

where p̂(s, s

0
) is the gold distribution over the defined relatedness scores, p(h

(4)
s

, h

(4)
s

0 ) is the pre-
dicted distribution given the the sentence representations, and KL

⇣
p̂(s, s

0
)

���p(h

(4)
s

, h

(4)
s

0 )

⌘
is the

KL-divergence between the two distributions. ✓rel is defined as (Wrel, brel, EPOS, Echunk, ✓e

).

3.6 TRAINING THE ENTAILMENT LAYER

The objective function is defined as follows:

�
X

(s,s
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log p(y

(5)
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s

, h

(5)
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where p(y

(5)
(s,s

0) = ↵|h(5)
s

, h

(5)
s

0 ) is the probability value that the correct label ↵ is assigned to the
premise-hypothesis pair (s, s0). ✓ent is defined as (Went, bent, EPOS, Echunk, Erel, ✓e

), where Erel

is the set of the relatedness label embeddings.

4 RELATED WORK

Many deep learning approaches have proven to be effective in a variety of NLP tasks and are becom-
ing more and more complex. They are typically designed to handle single tasks, or some of them
are designed as general-purpose models (Kumar et al., 2016; Sutskever et al., 2014) but applied to
different tasks independently.
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3.6 TRAINING THE ENTAILMENT LAYER

The objective function is defined as follows:

�
X

(s,s

0)

log p(y

(5)
(s,s

0) = ↵|h(5)
s

, h

(5)
s

0 ) + �kWentk2
+ �k✓rel � ✓

0
relk2

, (10)

where p(y

(5)
(s,s

0) = ↵|h(5)
s

, h

(5)
s

0 ) is the probability value that the correct label ↵ is assigned to the
premise-hypothesis pair (s, s0). ✓ent is defined as (Went, bent, EPOS, Echunk, Erel, ✓e

), where Erel

is the set of the relatedness label embeddings.

4 RELATED WORK

Many deep learning approaches have proven to be effective in a variety of NLP tasks and are becom-
ing more and more complex. They are typically designed to handle single tasks, or some of them
are designed as general-purpose models (Kumar et al., 2016; Sutskever et al., 2014) but applied to
different tasks independently.

6

Chunking training

Entailment	training
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Single JMTall JMTAB JMTABC JMTDE

A POS 97.45 97.55 97.52 97.54 n/a
B Chunking 95.02 (97.12) 95.77 (97.28) n/a

C Dependency UAS 93.35 94.67 n/a 94.71 n/a
Dependency LAS 91.42 92.90 n/a 92.92 n/a

D Relatedness 0.247 0.233 n/a n/a 0.238
E Entailment 81.8 86.2 n/a n/a 86.8

Table 1: Test set results for the five tasks. In the relatedness task, the lower scores are better.

Method Acc.
JMTall 97.55
Ling et al. (2015) 97.78
Kumar et al. (2016) 97.56
Ma & Hovy (2016) 97.55
Søgaard (2011) 97.50
Collobert et al. (2011) 97.29
Tsuruoka et al. (2011) 97.28
Toutanova et al. (2003) 97.27

Table 2: POS tagging results.

Method F1
JMTAB 95.77
Søgaard & Goldberg (2016) 95.56
Suzuki & Isozaki (2008) 95.15
Collobert et al. (2011) 94.32
Kudo & Matsumoto (2001) 93.91
Tsuruoka et al. (2011) 93.81

Table 3: Chunking results.

Method UAS LAS
JMTall 94.67 92.90
Single 93.35 91.42
Andor et al. (2016) 94.61 92.79
Alberti et al. (2015) 94.23 92.36
Weiss et al. (2015) 93.99 92.05
Dyer et al. (2015) 93.10 90.90
Bohnet (2010) 92.88 90.71

Table 4: Dependency results.

Method MSE
JMTall 0.233
JMTDE 0.238
Zhou et al. (2016) 0.243
Tai et al. (2015) 0.253

Table 5: Semantic relatedness results.

Method Acc.
JMTall 86.2
JMTDE 86.8
Yin et al. (2016) 86.2
Lai & Hockenmaier (2014) 84.6

Table 6: Textual entailment results.

6.2 COMPARISON WITH PUBLISHED RESULTS

POS tagging: Table 2 shows the results of POS tagging, and our JMT model achieves the score
close to the state-of-the-art results. The best result to date has been achieved by Ling et al. (2015),
which uses character-based LSTMs. Incorporating the character-based encoders into our JMT model
would be an interesting direction, but we have shown that the simple pre-trained character n-gram
embeddings lead to the promising result.

Chunking: Table 3 shows the results of chunking, and our JMT model achieves the state-of-the-art
result. Søgaard & Goldberg (2016) proposed to jointly learn POS tagging and chunking in different
layers, but they only showed improvement for chunking. By contrast, our results show that the
low-level tasks are also improved by the joint learning.

Dependency parsing: Table 4 shows the results of dependency parsing by using only the WSJ
corpus in terms of the dependency annotations, and our JMT model achieves the state-of-the-art
result.6 It is notable that our simple greedy dependency parser outperforms the previous state-of-
the-art result which is based on beam search with global information. The result suggests that the
bi-LSTMs efficiently capture global information necessary for dependency parsing. Moreover, our
single task result already achieves high accuracy without the POS and chunking information.

Semantic relatedness: Table 5 shows the results of the semantic relatedness task, and our JMT
model achieves the state-of-the-art result. The result of “JMTDE” is already better than the previous
state-of-the-art results. Both of Zhou et al. (2016) and Tai et al. (2015) explicitly used syntactic
tree structures, and Zhou et al. (2016) relied on attention mechanisms. However, our method uses
the simple max-pooling strategy, which suggests that it is worth investigating such simple methods
before developing complex methods for simple tasks. Currently, our JMT model does not explicitly
use the learned dependency structures, and thus the explicit use of the output from the dependency
layer should be an interesting direction of future work.

6Choe & Charniak (2016) employed the tri-training technique to expand the training data with
automatically-generated 400,000 trees in addition to the WSJ corpus, and reported 95.9 UAS and 94.1 LAS.
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Obstacle	3:	No	Zero	Shot	Word	Predictions

• Answers	can	only	be	predicted	if	they	were	
seen	during	training	and	part	of	the	softmax

• But	it’s	natural	to	learn	new	words	in	an	active	
conversation	and	systems	should	be	able	to	
pick	them	up



Tackling	Obstacle	by	Predicting	Unseen	Words	

• Idea:	Mixture	Model	of	softmax and	pointers:

• Pointer	Sentinel	Mixture	Models	by
Stephen	Merity,	Caiming Xiong,	James	Bradbury,	
Richard	Socher

Pointer Sentinel Mixture Models

Stephen Merity SMERITY@SALESFORCE.COM
Caiming Xiong CXIONG@SALESFORCE.COM
James Bradbury JAMES.BRADBURY@SALESFORCE.COM
Richard Socher RSOCHER@SALESFORCE.COM

MetaMind - A Salesforce Company, Palo Alto, CA, USA

Abstract

Recent neural network sequence models with
softmax classifiers have achieved their best lan-
guage modeling performance only with very
large hidden states and large vocabularies. Even
then they struggle to predict rare or unseen words
even if the context makes the prediction un-
ambiguous. We introduce the pointer sentinel
mixture architecture for neural sequence models
which has the ability to either reproduce a word
from the recent context or produce a word from a
standard softmax classifier. Our pointer sentinel-
LSTM model achieves state of the art language
modeling performance on the Penn Treebank
(70.9 perplexity) while using far fewer parame-
ters than a standard softmax LSTM. In order to
evaluate how well language models can exploit
longer contexts and deal with more realistic vo-
cabularies and larger corpora we also introduce
the freely available WikiText corpus.1

1. Introduction

A major difficulty in language modeling is learning when
to predict specific words from the immediate context. For
instance, imagine a new person is introduced and two para-
graphs later the context would allow one to very accurately
predict this person’s name as the next word. For standard
neural sequence models to predict this name, they would
have to encode the name, store it for many time steps in
their hidden state, and then decode it when appropriate. As
the hidden state is limited in capacity and the optimization
of such models suffer from the vanishing gradient prob-
lem, this is a lossy operation when performed over many
timesteps. This is especially true for rare words.

Models with soft attention or memory components have
been proposed to help deal with this challenge, aiming to
allow for the retrieval and use of relevant previous hidden

1Available for download at the WikiText dataset site
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Figure 1. Illustration of the pointer sentinel-RNN mixture model.
g is the mixture gate which uses the sentinel to dictate how much
probability mass to give to the vocabulary.

states, in effect increasing hidden state capacity and pro-
viding a path for gradients not tied to timesteps. Even with
attention, the standard softmax classifier that is being used
in these models often struggles to correctly predict rare or
previously unknown words.

Pointer networks (Vinyals et al., 2015) provide one poten-
tial solution for rare and out of vocabulary (OoV) words as
a pointer network uses attention to select an element from
the input as output. This allows it to produce previously
unseen input tokens. While pointer networks improve per-
formance on rare words and long-term dependencies they
are unable to select words that do not exist in the input.

We introduce a mixture model, illustrated in Fig. 1, that
combines the advantages of standard softmax classifiers
with those of a pointer component for effective and effi-
cient language modeling. Rather than relying on the RNN
hidden state to decide when to use the pointer, as in the re-
cent work of Gülçehre et al. (2016), we allow the pointer
component itself to decide when to use the softmax vocab-
ulary through a sentinel. The model improves the state of
the art perplexity on the Penn Treebank. Since this com-
monly used dataset is small and no other freely available
alternative exists that allows for learning long range depen-
dencies, we also introduce a new benchmark dataset for
language modeling called WikiText.
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Pointer-Sentinel	Model
Pointer Sentinel Mixture Models

· · ·

 Sentinel

x

RNN Distribution
pvocab(yN |w1, . . . , wN�1)pvocab(yN |w1, . . . , wN�1)

Pointer Distribution
pptr(yN |w1, . . . , wN�1)pptr(yN |w1, . . . , wN�1)

Output Distribution
p(yN |w1, . . . , wN�1)p(yN |w1, . . . , wN�1)

 Sentinel Query

    RNN
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+

···

···

Softmax

Softmax

· · ·

· · ·

· · ·

Mixture gate gg

Figure 2. Visualization of the pointer sentinel-RNN mixture model. The query, produced from applying an MLP to the last output of the
RNN, is used by the pointer network to identify likely matching words from the past. The � nodes are inner products between the query
and the RNN hidden states. If the pointer component is not confident, probability mass can be directed to the RNN by increasing the
value of the mixture gate g via the sentinel, seen in grey. If g = 1 then only the RNN is used. If g = 0 then only the pointer is used.

2. The Pointer Sentinel for Language

Modeling

Given a sequence of words w1, . . . , wN�1, our task is to
predict the next word wN .

2.1. The softmax-RNN Component

Recurrent neural networks (RNNs) have seen widespread
use for language modeling (Mikolov et al., 2010) due to
their ability to, at least in theory, retain long term depen-
dencies. RNNs employ the chain rule to factorize the joint
probabilities over a sequence of tokens: p(w1, . . . , wN ) =QN

i=1 p(wi|w1, . . . , wi�1). More precisely, at each time
step i, we compute the RNN hidden state hi according to
the previous hidden state hi�1 and the input xi such that
hi = RNN(xi, hi�1). When all the N � 1 words have
been processed by the RNN, the final state hN�1 is fed
into a softmax layer which computes the probability over
a vocabulary of possible words:

pvocab(w) = softmax(UhN�1), (1)

where pvocab 2 RV , U 2 RV ⇥H , H is the hidden size, and
V the vocabulary size. RNNs can suffer from the vanishing
gradient problem. The LSTM (Hochreiter & Schmidhuber,
1997) architecture has been proposed to deal with this by
updating the hidden state according to a set of gates. Our
work focuses on the LSTM but can be applied to any RNN
architecture that ends in a vocabulary softmax.

2.2. The Pointer Network Component

In this section, we propose a modification to pointer net-
works for language modeling. To predict the next word in
the sequence, a pointer network would select the member
of the input sequence p(w1, . . . , wN�1) with the maximal
attention score as the output.

The simplest way to compute an attention score for a spe-
cific hidden state is an inner product with all the past hid-
den states h, with each hidden state hi 2 RH . However, if
we want to compute such a score for the most recent word
(since this word may be repeated), we need to include the
last hidden state itself in this inner product. Taking the in-
ner product of a vector with itself results in the vector’s
magnitude squared, meaning the attention scores would be
strongly biased towards the most recent word. Hence we
project the current hidden state to a query vector q first. To
produce the query q we compute

q = tanh(WhN�1 + b), (2)

where W 2 RH⇥H , b 2 RH , and q 2 RH . To generate the
pointer attention scores, we compute the match between the
previous RNN output states hi and the query q by taking the
inner product, followed by a softmax activation function to
obtain a probability distribution:

zi = qT hi, (3)
a = softmax(z), (4)

where z 2 RL, a 2 RL, and L is the total number of hidden



Pointer	Sentinel	for	Language	Modeling
Pointer Sentinel Mixture Models

Model Parameters Validation Test

Mikolov & Zweig (2012) - KN-5 2M‡ � 141.2
Mikolov & Zweig (2012) - KN5 + cache 2M‡ � 125.7
Mikolov & Zweig (2012) - RNN 6M‡ � 124.7
Mikolov & Zweig (2012) - RNN-LDA 7M‡ � 113.7
Mikolov & Zweig (2012) - RNN-LDA + KN-5 + cache 9M‡ � 92.0
Pascanu et al. (2013a) - Deep RNN 6M � 107.5
Cheng et al. (2014) - Sum-Prod Net 5M‡ � 100.0
Zaremba et al. (2014) - LSTM (medium) 20M 86.2 82.7
Zaremba et al. (2014) - LSTM (large) 66M 82.2 78.4
Gal (2015) - Variational LSTM (medium, untied) 20M 81.9 ± 0.2 79.7 ± 0.1
Gal (2015) - Variational LSTM (medium, untied, MC) 20M � 78.6 ± 0.1
Gal (2015) - Variational LSTM (large, untied) 66M 77.9 ± 0.3 75.2 ± 0.2
Gal (2015) - Variational LSTM (large, untied, MC) 66M � 73.4 ± 0.0
Kim et al. (2016) - CharCNN 19M � 78.9
Zilly et al. (2016) - Variational RHN 32M 72.8 71.3

Zoneout + Variational LSTM (medium) 20M 84.4 80.6
Pointer Sentinel-LSTM (medium) 21M 72.4 70.9

Table 2. Single model perplexity on validation and test sets for the Penn Treebank language modeling task. For our models and the
models of Zaremba et al. (2014) and Gal (2015), medium and large refer to a 650 and 1500 units two layer LSTM respectively. The
medium pointer sentinel-LSTM model achieves lower perplexity than the large LSTM model of Gal (2015) while using a third of the
parameters and without using the computationally expensive Monte Carlo (MC) dropout averaging at test time. Parameter numbers with
‡ are estimates based upon our understanding of the model and with reference to Kim et al. (2016).

Model Parameters Validation Test

Variational LSTM implementation from Gal (2015) 20M 101.7 96.3

Zoneout + Variational LSTM 20M 108.7 100.9
Pointer Sentinel-LSTM 21M 84.8 80.8

Table 3. Single model perplexity on validation and test sets for the WikiText-2 language modeling task. All compared models use a two
layer LSTM with a hidden size of 650 and the same hyperparameters as the best performing Penn Treebank model.

was since seeing a word. By integrating the gating func-
tion into the pointer component, we avoid the RNN hidden
state having to maintain this intensive bookkeeping.

7. Conclusion

We introduced the pointer sentinel mixture model and the
WikiText language modeling dataset. This model achieves
state of the art results in language modeling over the Penn
Treebank while using few additional parameters and little
additional computational complexity at prediction time.

We have also motivated the need to move from Penn Tree-
bank to a new language modeling dataset for long range
dependencies, providing WikiText-2 and WikiText-103 as
potential options. We hope this new dataset can serve as a
platform to improve handling of rare words and the usage
of long term dependencies in language modeling.
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Obstacle	4:	Duplicate	Word	Representations

• Different	encodings	for	encoder	(Word2Vec	
and	GloVe word	vectors)	and	decoder	
(softmax classification	weights	for	words)

• Duplicate	parameters/meaningPointer Sentinel Mixture Models
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Figure 2. Visualization of the pointer sentinel-RNN mixture model. The query, produced from applying an MLP to the last output of the
RNN, is used by the pointer network to identify likely matching words from the past. The � nodes are inner products between the query
and the RNN hidden states. If the pointer component is not confident, probability mass can be directed to the RNN by increasing the
value of the mixture gate g via the sentinel, seen in grey. If g = 1 then only the RNN is used. If g = 0 then only the pointer is used.

2. The Pointer Sentinel for Language

Modeling

Given a sequence of words w1, . . . , wN�1, our task is to
predict the next word wN .

2.1. The softmax-RNN Component

Recurrent neural networks (RNNs) have seen widespread
use for language modeling (Mikolov et al., 2010) due to
their ability to, at least in theory, retain long term depen-
dencies. RNNs employ the chain rule to factorize the joint
probabilities over a sequence of tokens: p(w1, . . . , wN ) =QN

i=1 p(wi|w1, . . . , wi�1). More precisely, at each time
step i, we compute the RNN hidden state hi according to
the previous hidden state hi�1 and the input xi such that
hi = RNN(xi, hi�1). When all the N � 1 words have
been processed by the RNN, the final state hN�1 is fed
into a softmax layer which computes the probability over
a vocabulary of possible words:

pvocab(w) = softmax(UhN�1), (1)

where pvocab 2 RV , U 2 RV ⇥H , H is the hidden size, and
V the vocabulary size. RNNs can suffer from the vanishing
gradient problem. The LSTM (Hochreiter & Schmidhuber,
1997) architecture has been proposed to deal with this by
updating the hidden state according to a set of gates. Our
work focuses on the LSTM but can be applied to any RNN
architecture that ends in a vocabulary softmax.

2.2. The Pointer Network Component

In this section, we propose a modification to pointer net-
works for language modeling. To predict the next word in
the sequence, a pointer network would select the member
of the input sequence p(w1, . . . , wN�1) with the maximal
attention score as the output.

The simplest way to compute an attention score for a spe-
cific hidden state is an inner product with all the past hid-
den states h, with each hidden state hi 2 RH . However, if
we want to compute such a score for the most recent word
(since this word may be repeated), we need to include the
last hidden state itself in this inner product. Taking the in-
ner product of a vector with itself results in the vector’s
magnitude squared, meaning the attention scores would be
strongly biased towards the most recent word. Hence we
project the current hidden state to a query vector q first. To
produce the query q we compute

q = tanh(WhN�1 + b), (2)

where W 2 RH⇥H , b 2 RH , and q 2 RH . To generate the
pointer attention scores, we compute the match between the
previous RNN output states hi and the query q by taking the
inner product, followed by a softmax activation function to
obtain a probability distribution:

zi = qT hi, (3)
a = softmax(z), (4)

where z 2 RL, a 2 RL, and L is the total number of hidden



Tackling	Obstacle	by	Tying	Word	Vectors

• Simple	but	theoretically	motivated	idea:	tie	
word	vectors	and	train	single	weights	jointly

• Tying	Word	Vectors	and	Word	Classifiers:	A	Loss	
Framework	for	Language	Modeling,	Hakan
Inan, Khashayar Khosravi, Richard	Socher
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Table 2: Comparison of our work to previous state of the art on word-level validation and test perplexities on
the Penn Treebank corpus.

MODEL PARAMETERS VALIDATION TEST
KN-5 (Mikolov & Zweig) 2M - 141.2

KN-5 + Cache (Mikolov & Zweig) 2M - 125.7
RNN (Mikolov & Zweig) 6M - 124.7
RNN+LDA (Mikolov & Zweig) 7M - 113.7
RNN+LDA+KN-5+Cache (Mikolov & Zweig) 9M - 92.0
Deep RNN (Pascanu et al., 2013a) 6M - 107.5
Sum-Prod Net (Cheng et al., 2014) 5M - 100.0
LSTM (medium) (Zaremba et al., 2014) 20M 86.2 82.7
LSTM (large) (Zaremba et al., 2014) 66M 82.2 78.4
VD-LSTM (medium, untied) (Gal, 2015) 20M 81.9 ± 0.2 79.7 ± 0.1

VD-LSTM (medium, untied, MC) (Gal, 2015) 20M - 78.6 ± 0.1

VD-LSTM (large, untied) (Gal, 2015) 66M 77.9 ± 0.3 75.2 ± 0.2

VD-LSTM (large, untied, MC) (Gal, 2015) 66M - 73.4 ± 0.0

CharCNN (Kim et al., 2015) 19M - 78.9
VD-RHN (Zilly et al., 2016) 32M 72.8 71.3
Pointer Sentinel-LSTM(medium) (Merity et al., 2016) 21M 72.4 70.9
38 Large LSTMs (Zaremba et al., 2014) 2.51B 71.9 68.7
10 Large VD-LSTMs (Gal, 2015) 660M - 68.7
VD-LSTM +REAL (medium) 14M 75.7 73.2
VD-LSTM +REAL (large) 51M 71.1 68.5

gether which are plausible even when the target word is not successfully captured by the model. We
provide a few examples from the PTB test set which compare the prediction performance of 1500
unit VD-LSTM and 1500 unit VD-LSTM +REAL in table 3. We would like to note that prediction
performance of VD-LSTM +RE is similar to VD-LSTM +REAL for the large network.

7 CONCLUSION

In this work, we introduced a novel loss framework for language modeling. Particularly, we showed
that the metric encoded into space of word embeddings could be used to generate a more informed
data distribution than the one-hot targets, and that additionally training against this distribution im-
proves learning. We also showed theoretically that this approach lends itself to a second improve-
ment, which is simply reusing the input embedding matrix in the output projection layer. This has
an additional benefit of reducing the number of trainable variables in the model. We empirically
validated the theoretical link, and verified that both proposed changes do in fact belong to the same
framework. In our experiments on the Penn Treebank corpus, we showed that our framework allows
a classical LSTM network with variational dropout to outperform all existing models, and that even
the simple modification of reusing the word embedding in the output projection layer is sufficient
for large networks.

The improvements achieved by our framework are not unique to vanilla language modeling, and are
readily applicable to other tasks which utilize language models such as neural machine translation,
speech recognition, and text summarization. This could lead to significant improvements in such
models with especially large vocabularies, with the additional benefit of greatly reducing the number
of parameters to be trained.
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Obstacle	5:	Questions	have	input	
independent	representationsUnder review as a conference paper at ICLR 2017

2 DYNAMIC COATTENTION NETWORKS

Figure 1 illustrates an overview of the DCN. We first describe the encoders for the document and
the question, followed by the coattention mechanism and the dynamic decoder which produces the
answer span.

Document encoder Question encoder

What plants create most 
electric power?

Coattention encoder

The weight of boilers and condensers generally 
makes the power-to-weight ... However, most 
electric power is generated using steam turbine 
plants, so that indirectly the world's industry 
is  ...

Dynamic pointer 
decoder

start index: 49
end index: 51

steam turbine plants

Figure 1: Overview of the Dynamic Coattention Network.

2.1 DOCUMENT AND QUESTION ENCODER

Let (xQ
1 , x

Q
2 , . . . , x

Q
n ) denote the sequence of word vectors corresponding to words in the question

and (xD
1 , x

D
2 , . . . , x

D
m) denote the same for words in the document. Using an LSTM (Hochreiter

& Schmidhuber, 1997), we encode the document as: dt = LSTMenc

�
dt�1, x

D
t

�
. We define the

document encoding matrix as D = [d1 . . . dn d?] 2 R`⇥(m+1). We also add a sentinel vector d?
(Merity et al., 2016), which we later show allows the model to not attend to any particular word in
the input.

The question embeddings are computed with the same LSTM to share representation power: qt =

LSTMenc

⇣
qt�1, x

Q
t

⌘
. We define an intermediate question representation Q

0 = [q1 . . . qm q?] 2
R`⇥(n+1). To allow for variation between the question encoding space and the document encod-
ing space, we introduce a non-linear projection layer on top of the question encoding. The final
representation for the question becomes: Q = tanh

�
W

(Q)
Q

0 + b

(Q)
�
2 R`⇥(n+1).

2.2 COATTENTION ENCODER

We propose a coattention mechanism that attends to the question and document simultaneously,
similar to (Lu et al., 2016), and finally fuses both attention contexts. Figure 2 provides an illustration
of the coattention encoder.

We first compute the affinity matrix, which contains affinity scores corresponding to all pairs of
document words and question words: L = D

>
Q 2 R(m+1)⇥(n+1). The affinity matrix is nor-

malized row-wise to produce the attention weights A

Q across the document for each word in the
question, and column-wise to produce the attention weights A

D across the question for each word
in the document:

A

Q = softmax (L) 2 R(m+1)⇥(n+1) and A

D = softmax
�
L

>� 2 R(n+1)⇥(m+1) (1)

Next, we compute the summaries, or attention contexts, of the document in light of each word of the
question.

C

Q = DA

Q 2 R`⇥(n+1)
. (2)

2
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Figure 2: Coattention encoder. The affinity matrix L is not shown here. We instead directly show
the normalized attention weights A

D and A

Q.

We similarly compute the summaries QA

D of the question in light of each word of the document.
Similar to Cui et al. (2016), we also compute the summaries C

Q
A

D of the previous attention con-
texts in light of each word of the document. These two operations can be done in parallel, as is
shown in Eq. 3. One possible interpretation for the operation C

Q
A

D is the mapping of question
encoding into space of document encodings.

C

D =
⇥
Q; CQ

⇤
A

D 2 R2`⇥(m+1)
. (3)

We define C

D, a co-dependent representation of the question and document, as the coattention
context. We use the notation [a; b] for concatenating the vectors a and b horizontally.

The last step is the fusion of temporal information to the coattention context via a bidirectional
LSTM:

ut = Bi-LSTM
�
ut�1, ut+1,

⇥
dt; c

D
t

⇤�
2 R2`

. (4)

We define U = [u1, . . . , um] 2 R`⇥m , which provides a foundation for selecting which span may
be the best possible answer, as the coattention encoding.

2.3 DYNAMIC POINTING DECODER

Due to the nature of SQuAD, an intuitive method for producing the answer span is by predicting
the start and end points of the span (Wang & Jiang, 2016). However, given a question-document
pair, there may exist several intuitive answer spans within the document, each corresponding to a
local maxima. We propose an iterative technique to select an answer span by alternating between
predicting the start point and predicting the end point. This iterative procedure allows the model to
recover from initial local maxima corresponding to incorrect answer spans.

Figure 3 provides an illustration of the Dynamic Decoder, which is similar to a state machine whose
state is maintained by an LSTM-based sequential model. During each iteration, the decoder updates
its state taking into account the coattention encoding corresponding to current estimates of the start
and end positions, and produces, via a multilayer neural network, new estimates of the start and end
positions.

Let hi, si, and ei denote the hidden state of the LSTM, the estimate of the position, and the estimate
of the end position during iteration i. The LSTM state update is then described by Eq. 5.

hi = LSTM dec

�
hi�1,

⇥
usi�1 ; uei�1

⇤�
(5)

where usi�1 and uei�1 are the representations corresponding to the previous estimate of the start and
end positions in the coattention encoding U .
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Figure 3: Dynamic Decoder. Blue denotes the variables and functions related to estimating the start
position whereas red denotes the variables and functions related to estimating the end position.

Given the current hidden state hi, previous start position usi�1 , and previous end position uei�1 , we
estimate the current start position and end position via Eq. 6 and Eq. 7.

si = argmax
t

(↵1, . . . , ↵m) (6)

ei = argmax
t

(�1, . . . , �m) (7)

where ↵t and �t represent the start score and end score corresponding to the tth word in the doc-
ument. We compute ↵t and �t with separate neural networks. These networks have the same
architecture but do not share parameters.

Based on the strong empirical performance of Maxout Networks (Goodfellow et al., 2013) and High-
way Networks (Srivastava et al., 2015), especially with regards to deep architectures, we propose a
Highway Maxout Network (HMN) to compute ↵t as described by Eq. 8. The intuition behind us-
ing such model is that the QA task consists of multiple question types and document topics. These
variations may require different models to estimate the answer span. Maxout provides a simple and
effective way to pool across multiple model variations.

↵t = HMN start

�
ut, hi, usi�1 , uei�1

�
(8)

Here, ut is the coattention encoding corresponding to the tth word in the document. HMN start is
illustrated in Figure 4. The end score, �t, is computed similarly to the start score ↵t, but using a
separate HMN end.

We now describe the HMN model:

HMN
�
ut, hi, usi�1 , uei�1

�
= max

⇣
W

(3)
h
m

(1)
t ; m

(2)
t

i
+ b

(3)
⌘

(9)

r = tanh
⇣
W

(D)
⇥
hi; usi�1 ; uei�1

⇤⌘
(10)

m

(1)
t = max

⇣
W

(1) [ut; r] + b

(1)
⌘

(11)

m

(2)
t = max

⇣
W

(2)
m

(1)
t + b

(2)
⌘

(12)
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end positions of the answer span in a single pass (Wang & Jiang, 2016), we iteratively update the
start and end positions in a similar fashion to the Iterative Conditional Modes algorithm (Besag,
1986).

4 EXPERIMENTS

4.1 IMPLEMENTATION DETAILS

We train and evaluate our model on the SQuAD dataset. To preprocess the corpus, we use the
tokenizer from Stanford CoreNLP (Manning et al., 2014). We use as GloVe word vectors pre-
trained on the 840B Common Crawl corpus (Pennington et al., 2014). We limit the vocabulary
to words that are present in the Common Crawl corpus and set embeddings for out-of-vocabulary
words to zero. Empirically, we found that training the embeddings consistently led to overfitting and
subpar performance, and hence only report results with fixed word embeddings.

We use a max sequence length of 600 during training and a hidden state size of 200 for all recurrent
units, maxout layers, and linear layers. For the dynamic decoder, we set the maximum number of
iterations to 4 and use a maxout pool size of 32. We use dropout to regularize our network during
training (Srivastava et al., 2014), and optimize the model using ADAM (Kingma & Ba, 2014). All
models are implemented and trained with Chainer (Tokui et al., 2015).

4.2 RESULTS

Evaluation on the SQuAD dataset consists of two metrics. The exact match score (EM) calculates
the exact string match between the predicted answer and a ground truth answer. The F1 score
calculates the overlap between words in the predicted answer and a ground truth answer. Because
a document-question pair may have several ground truth answers, the EM and F1 for a document-
question pair is taken to be the maximum value across all ground truth answers. The overall metric
is then computed by averaging over all document-question pairs. The offical SQuAD evaluation is
hosted on CodaLab 2. The training and development sets are publicly available while the test set is
withheld.

Model Dev EM Dev F1 Test EM Test F1

Ensemble

DCN (Ours) 70.3 79.4 71.2 80.4
Microsoft Research Asia ⇤ � � 69.4 78.3
Allen Institute ⇤ 69.2 77.8 69.9 78.1
Singapore Management University ⇤ 67.6 76.8 67.9 77.0
Google NYC ⇤ 68.2 76.7 � �
Single model

DCN (Ours) 65.4 75.6 66.2 75.9
Microsoft Research Asia ⇤ 65.9 75.2 65.5 75.0
Google NYC ⇤ 66.4 74.9 � �
Singapore Management University ⇤ � � 64.7 73.7
Carnegie Mellon University ⇤ � � 62.5 73.3
Dynamic Chunk Reader (Yu et al., 2016) 62.5 71.2 62.5 71.0
Match-LSTM (Wang & Jiang, 2016) 59.1 70.0 59.5 70.3
Baseline (Rajpurkar et al., 2016) 40.0 51.0 40.4 51.0

Human (Rajpurkar et al., 2016) 81.4 91.0 82.3 91.2

Table 1: Leaderboard performance at the time of writing (Nov 4 2016). ⇤ indicates that the model
used for submission is unpublished. � indicates that the development scores were not publicly
available at the time of writing.

2https://worksheets.codalab.org
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à
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Figure 1: Block diagrams showing the computation structure of the QRNN compared with typical
LSTM and CNN architectures. Red signifies convolutions or matrix multiplications; a continuous
block means that those computations can proceed in parallel. Blue signifies parameterless functions
that operate in parallel along the channel/feature dimension. LSTMs can be factored into (red) linear
blocks and (blue) elementwise blocks, but computation at each timestep still depends on the results
from the previous timestep.

2 MODEL

Each layer of a quasi-recurrent neural network consists of two kinds of subcomponents, analogous
to convolution and pooling layers in CNNs. The convolutional component, like convolutional layers
in CNNs, allows fully parallel computation across both minibatches and spatial dimensions, in this
case the sequence dimension. The pooling component, like pooling layers in CNNs, lacks trainable
parameters and allows fully parallel computation across minibatch and feature dimensions.

Given an input sequence X 2 RT⇥n of T n-dimensional vectors x1 . . .xT

, the convolutional sub-
component of a QRNN performs convolutions in the timestep dimension with a bank of m filters,
producing a sequence Z 2 RT⇥m of m-dimensional candidate vectors z

t

. In order to be useful for
tasks that include prediction of the next token, the filters must not allow the computation for any
given timestep to access information from future timesteps. That is, with filters of width k, each z

t

depends only on x
t�k+1 through x

t

. This concept, known as a masked convolution (van den Oord
et al., 2016), is implemented by padding the input to the left by the convolution’s filter size minus
one.

We apply additional convolutions with separate filter banks to obtain sequences of vectors for the
elementwise gates that are needed for the pooling function. While the candidate vectors are passed
through a tanh nonlinearity, the gates use an elementwise sigmoid. If the pooling function requires a
forget gate f

t

and an output gate o
t

at each timestep, the full set of computations in the convolutional
component is then:

Z = tanh(W
z

⇤X)

F = �(W
f

⇤X)

O = �(W
o

⇤X),

(1)

where W
z

,W
f

, and W
o

, each in Rk⇥n⇥m, are the convolutional filter banks and ⇤ denotes a
masked convolution along the timestep dimension. Note that if the filter width is 2, these equations
reduce to the LSTM-like
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Convolution filters of larger width effectively compute higher n-gram features at each timestep; thus
larger widths are especially important for character-level tasks.

Suitable functions for the pooling subcomponent can be constructed from the familiar elementwise
gates of the traditional LSTM cell. We seek a function controlled by gates that can mix states across
timesteps, but which acts independently on each channel of the state vector. The simplest option,
which Balduzzi & Ghifary (2016) term “dynamic average pooling”, uses only a forget gate:

h
t

= f
t

� h
t�1 + (1� f

t

)� z
t

, (3)
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Each layer of a quasi-recurrent neural network consists of two kinds of subcomponents, analogous
to convolution and pooling layers in CNNs. The convolutional component, like convolutional layers
in CNNs, allows fully parallel computation across both minibatches and spatial dimensions, in this
case the sequence dimension. The pooling component, like pooling layers in CNNs, lacks trainable
parameters and allows fully parallel computation across minibatch and feature dimensions.

Given an input sequence X 2 RT⇥n of T n-dimensional vectors x1 . . .xT

, the convolutional sub-
component of a QRNN performs convolutions in the timestep dimension with a bank of m filters,
producing a sequence Z 2 RT⇥m of m-dimensional candidate vectors z
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. In order to be useful for
tasks that include prediction of the next token, the filters must not allow the computation for any
given timestep to access information from future timesteps. That is, with filters of width k, each z
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depends only on x
t�k+1 through x
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. This concept, known as a masked convolution (van den Oord
et al., 2016), is implemented by padding the input to the left by the convolution’s filter size minus
one.

We apply additional convolutions with separate filter banks to obtain sequences of vectors for the
elementwise gates that are needed for the pooling function. While the candidate vectors are passed
through a tanh nonlinearity, the gates use an elementwise sigmoid. If the pooling function requires a
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Convolution filters of larger width effectively compute higher n-gram features at each timestep; thus
larger widths are especially important for character-level tasks.

Suitable functions for the pooling subcomponent can be constructed from the familiar elementwise
gates of the traditional LSTM cell. We seek a function controlled by gates that can mix states across
timesteps, but which acts independently on each channel of the state vector. The simplest option,
which Balduzzi & Ghifary (2016) term “dynamic average pooling”, uses only a forget gate:
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to convolution and pooling layers in CNNs. The convolutional component, like convolutional layers
in CNNs, allows fully parallel computation across both minibatches and spatial dimensions, in this
case the sequence dimension. The pooling component, like pooling layers in CNNs, lacks trainable
parameters and allows fully parallel computation across minibatch and feature dimensions.

Given an input sequence X 2 RT⇥n of T n-dimensional vectors x1 . . .xT

, the convolutional sub-
component of a QRNN performs convolutions in the timestep dimension with a bank of m filters,
producing a sequence Z 2 RT⇥m of m-dimensional candidate vectors z
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. In order to be useful for
tasks that include prediction of the next token, the filters must not allow the computation for any
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t�k+1 through x
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Convolution filters of larger width effectively compute higher n-gram features at each timestep; thus
larger widths are especially important for character-level tasks.

Suitable functions for the pooling subcomponent can be constructed from the familiar elementwise
gates of the traditional LSTM cell. We seek a function controlled by gates that can mix states across
timesteps, but which acts independently on each channel of the state vector. The simplest option,
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to convolution and pooling layers in CNNs. The convolutional component, like convolutional layers
in CNNs, allows fully parallel computation across both minibatches and spatial dimensions, in this
case the sequence dimension. The pooling component, like pooling layers in CNNs, lacks trainable
parameters and allows fully parallel computation across minibatch and feature dimensions.

Given an input sequence X 2 RT⇥n of T n-dimensional vectors x1 . . .xT

, the convolutional sub-
component of a QRNN performs convolutions in the timestep dimension with a bank of m filters,
producing a sequence Z 2 RT⇥m of m-dimensional candidate vectors z
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. In order to be useful for
tasks that include prediction of the next token, the filters must not allow the computation for any
given timestep to access information from future timesteps. That is, with filters of width k, each z
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Convolution filters of larger width effectively compute higher n-gram features at each timestep; thus
larger widths are especially important for character-level tasks.

Suitable functions for the pooling subcomponent can be constructed from the familiar elementwise
gates of the traditional LSTM cell. We seek a function controlled by gates that can mix states across
timesteps, but which acts independently on each channel of the state vector. The simplest option,
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Figure 3: Visualization of the final QRNN layer’s hidden state vectors cL
t

in the IMDb task, with
timesteps along the vertical axis. Colors denote neuron activations. After an initial positive statement
“This movie is simply gorgeous” (off graph at timestep 9), timestep 117 triggers a reset of most
hidden states due to the phrase “not exactly a bad story” (soon after “main weakness is its story”).
Only at timestep 158, after “I recommend this movie to everyone, even if you’ve never played the
game”, do the hidden units recover.

each layer, it was more computationally convenient to use a multiple of 32. As the Penn Treebank
is a relatively small dataset, preventing overfitting is of considerable importance and a major focus
of recent research. It is not obvious in advance which of the many RNN regularization schemes
would perform well when applied to the QRNN. Our tests showed encouraging results from zoneout
applied to the QRNN’s recurrent pooling layer, implemented as described in Section 2.1.

The experimental settings largely followed the “medium” setup of Zaremba et al. (2014). Optimiza-
tion was performed by stochastic gradient descent (SGD) without momentum. The learning rate was
set at 1 for six epochs, then decayed by 0.95 for each subsequent epoch, for a total of 72 epochs.
We additionally used L2 regularization of 2 ⇥ 10

�4 and rescaled gradients with norm above 10.
Zoneout was applied by performing dropout with ratio 0.1 on the forget gates of the QRNN, without
rescaling the output of the dropout function. Batches consist of 20 examples, each 105 timesteps.

Comparing our results on the gated QRNN with zoneout to the results of LSTMs with both ordinary
and variational dropout in Table 2, we see that the QRNN is highly competitive. The QRNN without
zoneout strongly outperforms both our medium LSTM and the medium LSTM of Zaremba et al.
(2014) which do not use recurrent dropout and is even competitive with variational LSTMs. This
may be due to the limited computational capacity that the QRNN’s pooling layer has relative to the
LSTM’s recurrent weights, providing structural regularization over the recurrence.

Without zoneout, early stopping based upon validation loss was required as the QRNN would begin
overfitting. By applying a small amount of zoneout (p = 0.1), no early stopping is required and
the QRNN achieves competitive levels of perplexity to the variational LSTM of Gal & Ghahramani

Model Parameters Validation Test

LSTM (medium) (Zaremba et al., 2014) 20M 86.2 82.7
Variational LSTM (medium) (Gal & Ghahramani, 2016) 20M 81.9 79.7
LSTM with CharCNN embeddings (Kim et al., 2016) 19M � 78.9
Zoneout + Variational LSTM (medium) (Merity et al., 2016) 20M 84.4 80.6

Our models
LSTM (medium) 20M 85.7 82.0
QRNN (medium) 18M 82.9 79.9
QRNN + zoneout (p = 0.1) (medium) 18M 82.1 78.3

Table 2: Single model perplexity on validation and test sets for the Penn Treebank language model-
ing task. Lower is better. “Medium” refers to a two-layer network with 640 or 650 hidden units per
layer. All QRNN models include dropout of 0.5 on embeddings and between layers. MC refers to
Monte Carlo dropout averaging at test time.
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Sequence length
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16 5.5x 6.7x 7.8x 8.3x 10.8x

32 4.2x 4.5x 4.9x 4.9x 6.4x

64 3.0x 3.0x 3.0x 3.0x 3.7x

128 2.1x 1.9x 2.0x 2.0x 2.4x

256 1.4x 1.4x 1.3x 1.3x 1.3x

Figure 4: Left: Training speed for two-layer 640-unit PTB LM on a batch of 20 examples of 105
timesteps. “RNN” and “softmax” include the forward and backward times, while “optimization
overhead” includes gradient clipping, L2 regularization, and SGD computations.
Right: Inference speed advantage of a 320-unit QRNN layer alone over an equal-sized cuDNN
LSTM layer for data with the given batch size and sequence length. Training results are similar.

(2016), which had variational inference based dropout of 0.2 applied recurrently. The best perform-
ing variation also used Monte Carlo (MC) dropout averaging at test time of 1000 different masks,
making it computationally expensive to run.

When training on the PTB dataset with an NVIDIA K40 GPU, we found that the QRNN is sub-
stantially faster than a standard LSTM, even when comparing against the optimized cuDNN LSTM.
In Figure 4 we provide a breakdown of the time taken for Chainer’s default LSTM, the cuDNN
LSTM, and QRNN to perform a full forward and backward pass on a single batch during training of
the RNN LM on PTB. For both LSTM implementations, running time was dominated by the RNN
computations, even with the highly optimized cuDNN implementation. For the QRNN implementa-
tion, however, the “RNN” layers are no longer the bottleneck. Indeed, there are diminishing returns
from further optimization of the QRNN itself as the softmax and optimization overhead take equal
or greater time. Note that the softmax, over a vocabulary size of only 10,000 words, is relatively
small; for tasks with larger vocabularies, the softmax would likely dominate computation time.

It is also important to note that the cuDNN library’s RNN primitives do not natively support any form
of recurrent dropout. That is, running an LSTM that uses a state-of-the-art regularization scheme at
cuDNN-like speeds would likely require an entirely custom kernel.

3.3 CHARACTER-LEVEL NEURAL MACHINE TRANSLATION

We evaluate the sequence-to-sequence QRNN architecture described in 2.1 on a challenging neu-
ral machine translation task, IWSLT German–English spoken-domain translation, applying fully
character-level segmentation. This dataset consists of 209,772 sentence pairs of parallel training
data from transcribed TED and TEDx presentations, with a mean sentence length of 103 characters
for German and 93 for English. We remove training sentences with more than 300 characters in
English or German, and use a unified vocabulary of 187 Unicode code points.

Our best performance on a development set (TED.tst2013) was achieved using a four-layer encoder–
decoder QRNN with 320 units per layer, no dropout or L2 regularization, and gradient rescaling to
a maximum magnitude of 5. Inputs were supplied to the encoder reversed. The first encoder layer
used convolutional filter width k = 6, while the other encoder layers used k = 2. Optimization was
performed for 10 epochs on minibatches of 16 examples using Adam (Kingma & Ba, 2014) with
↵ = 0.001, �1 = 0.9, �2 = 0.999, and ✏ = 10

�8. Decoding was performed using beam search with
beam width 8 and length normalization ↵ = 0.6. The modified log-probability ranking criterion is
provided in the appendix.

Results using this architecture were compared to an equal-sized four-layer encoder–decoder LSTM
with attention, applying dropout of 0.2. We again optimized using Adam; other hyperparameters
were equal to their values for the QRNN and the same beam search procedure was applied. Table
3 shows that the QRNN outperformed the character-level LSTM, almost matching the performance
of a word-level attentional baseline.
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Model Time / Epoch (s) Test Acc (%)

BSVM-bi (Wang & Manning, 2012) � 91.2
2 layer sequential BoW CNN (Johnson & Zhang, 2014) � 92.3
Ensemble of RNNs and NB-SVM (Mesnil et al., 2014) � 92.6
2-layer LSTM (Longpre et al., 2016) � 87.6
Residual 2-layer bi-LSTM (Longpre et al., 2016) � 90.1

Our models
Deeply connected 4-layer LSTM (cuDNN optimized) 480 90.9
Deeply connected 4-layer QRNN 150 91.4
D.C. 4-layer QRNN with k = 4 160 91.1

Table 1: Accuracy comparison on the IMDb binary sentiment classification task. All of our models
use 256 units per layer; all layers other than the first layer, whose filter width may vary, use filter
width k = 2. Train times are reported on a single NVIDIA K40 GPU. We exclude semi-supervised
models that conduct additional training on the unlabeled portion of the dataset.

3 EXPERIMENTS

We evaluate the performance of the QRNN on three different natural language tasks: document-level
sentiment classification, language modeling, and character-based neural machine translation. Our
QRNN models outperform LSTM-based models of equal hidden size on all three tasks while dra-
matically improving computation speed. Experiments were implemented in Chainer (Tokui et al.).

3.1 SENTIMENT CLASSIFICATION

We evaluate the QRNN architecture on a popular document-level sentiment classification bench-
mark, the IMDb movie review dataset (Maas et al., 2011). The dataset consists of a balanced sample
of 25,000 positive and 25,000 negative reviews, divided into equal-size train and test sets, with an
average document length of 231 words (Wang & Manning, 2012). We compare only to other results
that do not make use of additional unlabeled data (thus excluding e.g., Miyato et al. (2016)).

Our best performance on a held-out development set was achieved using a four-layer densely-
connected QRNN with 256 units per layer and word vectors initialized using 300-dimensional cased
GloVe embeddings (Pennington et al., 2014). Dropout of 0.3 was applied between layers, and we
used L2 regularization of 4 ⇥ 10

�6. Optimization was performed on minibatches of 24 examples
using RMSprop (Tieleman & Hinton, 2012) with learning rate of 0.001, ↵ = 0.9, and ✏ = 10

�8.

Small batch sizes and long sequence lengths provide an ideal situation for demonstrating the
QRNN’s performance advantages over traditional recurrent architectures. We observed a speedup
of 3.2x on IMDb train time per epoch compared to the optimized LSTM implementation provided
in NVIDIA’s cuDNN library. For specific batch sizes and sequence lengths, a 16x speed gain is
possible. Figure 4 provides extensive speed comparisons.

In Figure 3, we visualize the hidden state vectors cL
t

of the final QRNN layer on part of an example
from the IMDb dataset. Even without any post-processing, changes in the hidden state are visible
and interpretable in regards to the input. This is a consequence of the elementwise nature of the
recurrent pooling function, which delays direct interaction between different channels of the hidden
state until the computation of the next QRNN layer.

3.2 LANGUAGE MODELING

We replicate the language modeling experiment of Zaremba et al. (2014) and Gal & Ghahramani
(2016) to benchmark the QRNN architecture for natural language sequence prediction. The experi-
ment uses a standard preprocessed version of the Penn Treebank (PTB) by Mikolov et al. (2010).

We implemented a gated QRNN model with medium hidden size: 2 layers with 640 units in each
layer. Both QRNN layers use a convolutional filter width k of two timesteps. While the “medium”
models used in other work (Zaremba et al., 2014; Gal & Ghahramani, 2016) consist of 650 units in

5

Under review as a conference paper at ICLR 2017

Figure 3: Visualization of the final QRNN layer’s hidden state vectors cL
t

in the IMDb task, with
timesteps along the vertical axis. Colors denote neuron activations. After an initial positive statement
“This movie is simply gorgeous” (off graph at timestep 9), timestep 117 triggers a reset of most
hidden states due to the phrase “not exactly a bad story” (soon after “main weakness is its story”).
Only at timestep 158, after “I recommend this movie to everyone, even if you’ve never played the
game”, do the hidden units recover.

each layer, it was more computationally convenient to use a multiple of 32. As the Penn Treebank
is a relatively small dataset, preventing overfitting is of considerable importance and a major focus
of recent research. It is not obvious in advance which of the many RNN regularization schemes
would perform well when applied to the QRNN. Our tests showed encouraging results from zoneout
applied to the QRNN’s recurrent pooling layer, implemented as described in Section 2.1.

The experimental settings largely followed the “medium” setup of Zaremba et al. (2014). Optimiza-
tion was performed by stochastic gradient descent (SGD) without momentum. The learning rate was
set at 1 for six epochs, then decayed by 0.95 for each subsequent epoch, for a total of 72 epochs.
We additionally used L2 regularization of 2 ⇥ 10

�4 and rescaled gradients with norm above 10.
Zoneout was applied by performing dropout with ratio 0.1 on the forget gates of the QRNN, without
rescaling the output of the dropout function. Batches consist of 20 examples, each 105 timesteps.

Comparing our results on the gated QRNN with zoneout to the results of LSTMs with both ordinary
and variational dropout in Table 2, we see that the QRNN is highly competitive. The QRNN without
zoneout strongly outperforms both our medium LSTM and the medium LSTM of Zaremba et al.
(2014) which do not use recurrent dropout and is even competitive with variational LSTMs. This
may be due to the limited computational capacity that the QRNN’s pooling layer has relative to the
LSTM’s recurrent weights, providing structural regularization over the recurrence.

Without zoneout, early stopping based upon validation loss was required as the QRNN would begin
overfitting. By applying a small amount of zoneout (p = 0.1), no early stopping is required and
the QRNN achieves competitive levels of perplexity to the variational LSTM of Gal & Ghahramani

Model Parameters Validation Test

LSTM (medium) (Zaremba et al., 2014) 20M 86.2 82.7
Variational LSTM (medium) (Gal & Ghahramani, 2016) 20M 81.9 79.7
LSTM with CharCNN embeddings (Kim et al., 2016) 19M � 78.9
Zoneout + Variational LSTM (medium) (Merity et al., 2016) 20M 84.4 80.6

Our models
LSTM (medium) 20M 85.7 82.0
QRNN (medium) 18M 82.9 79.9
QRNN + zoneout (p = 0.1) (medium) 18M 82.1 78.3

Table 2: Single model perplexity on validation and test sets for the Penn Treebank language model-
ing task. Lower is better. “Medium” refers to a two-layer network with 640 or 650 hidden units per
layer. All QRNN models include dropout of 0.5 on embeddings and between layers. MC refers to
Monte Carlo dropout averaging at test time.
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LSTM/Linear

Linear

LSTM/Linear

Linear

fo-Pool

Convolution

fo-Pool

Convolution

Max-Pool

Convolution

Max-Pool

Convolution

QRNN

Figure 1: Block diagrams showing the computation structure of the QRNN compared with typical
LSTM and CNN architectures. Red signifies convolutions or matrix multiplications; a continuous
block means that those computations can proceed in parallel. Blue signifies parameterless functions
that operate in parallel along the channel/feature dimension. LSTMs can be factored into (red) linear
blocks and (blue) elementwise blocks, but computation at each timestep still depends on the results
from the previous timestep.

2 MODEL

Each layer of a quasi-recurrent neural network consists of two kinds of subcomponents, analogous
to convolution and pooling layers in CNNs. The convolutional component, like convolutional layers
in CNNs, allows fully parallel computation across both minibatches and spatial dimensions, in this
case the sequence dimension. The pooling component, like pooling layers in CNNs, lacks trainable
parameters and allows fully parallel computation across minibatch and feature dimensions.

Given an input sequence X 2 RT⇥n of T n-dimensional vectors x1 . . .xT

, the convolutional sub-
component of a QRNN performs convolutions in the timestep dimension with a bank of m filters,
producing a sequence Z 2 RT⇥m of m-dimensional candidate vectors z

t

. In order to be useful for
tasks that include prediction of the next token, the filters must not allow the computation for any
given timestep to access information from future timesteps. That is, with filters of width k, each z

t

depends only on x
t�k+1 through x

t

. This concept, known as a masked convolution (van den Oord
et al., 2016), is implemented by padding the input to the left by the convolution’s filter size minus
one.

We apply additional convolutions with separate filter banks to obtain sequences of vectors for the
elementwise gates that are needed for the pooling function. While the candidate vectors are passed
through a tanh nonlinearity, the gates use an elementwise sigmoid. If the pooling function requires a
forget gate f

t

and an output gate o
t

at each timestep, the full set of computations in the convolutional
component is then:

Z = tanh(W
z

⇤X)

F = �(W
f

⇤X)

O = �(W
o

⇤X),

(1)

where W
z

,W
f

, and W
o

, each in Rk⇥n⇥m, are the convolutional filter banks and ⇤ denotes a
masked convolution along the timestep dimension. Note that if the filter width is 2, these equations
reduce to the LSTM-like

z
t

= tanh(W1
z

x
t�1 +W2

z

x
t

)

f
t

= �(W1
f

x
t�1 +W2

f

x
t

)

o
t

= �(W1
o

x
t�1 +W2

o

x
t

).

(2)

Convolution filters of larger width effectively compute higher n-gram features at each timestep; thus
larger widths are especially important for character-level tasks.

Suitable functions for the pooling subcomponent can be constructed from the familiar elementwise
gates of the traditional LSTM cell. We seek a function controlled by gates that can mix states across
timesteps, but which acts independently on each channel of the state vector. The simplest option,
which Balduzzi & Ghifary (2016) term “dynamic average pooling”, uses only a forget gate:

h
t

= f
t

� h
t�1 + (1� f

t

)� z
t

, (3)
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Figure 2: Coattention encoder. The affinity matrix L is not shown here. We instead directly show
the normalized attention weights A

D and A

Q.

We similarly compute the summaries QA

D of the question in light of each word of the document.
Similar to Cui et al. (2016), we also compute the summaries C

Q
A

D of the previous attention con-
texts in light of each word of the document. These two operations can be done in parallel, as is
shown in Eq. 3. One possible interpretation for the operation C

Q
A

D is the mapping of question
encoding into space of document encodings.

C

D =
⇥
Q; CQ

⇤
A

D 2 R2`⇥(m+1)
. (3)

We define C

D, a co-dependent representation of the question and document, as the coattention
context. We use the notation [a; b] for concatenating the vectors a and b horizontally.

The last step is the fusion of temporal information to the coattention context via a bidirectional
LSTM:

ut = Bi-LSTM
�
ut�1, ut+1,

⇥
dt; c

D
t

⇤�
2 R2`

. (4)

We define U = [u1, . . . , um] 2 R`⇥m , which provides a foundation for selecting which span may
be the best possible answer, as the coattention encoding.

2.3 DYNAMIC POINTING DECODER

Due to the nature of SQuAD, an intuitive method for producing the answer span is by predicting
the start and end points of the span (Wang & Jiang, 2016). However, given a question-document
pair, there may exist several intuitive answer spans within the document, each corresponding to a
local maxima. We propose an iterative technique to select an answer span by alternating between
predicting the start point and predicting the end point. This iterative procedure allows the model to
recover from initial local maxima corresponding to incorrect answer spans.

Figure 3 provides an illustration of the Dynamic Decoder, which is similar to a state machine whose
state is maintained by an LSTM-based sequential model. During each iteration, the decoder updates
its state taking into account the coattention encoding corresponding to current estimates of the start
and end positions, and produces, via a multilayer neural network, new estimates of the start and end
positions.

Let hi, si, and ei denote the hidden state of the LSTM, the estimate of the position, and the estimate
of the end position during iteration i. The LSTM state update is then described by Eq. 5.

hi = LSTM dec

�
hi�1,

⇥
usi�1 ; uei�1

⇤�
(5)

where usi�1 and uei�1 are the representations corresponding to the previous estimate of the start and
end positions in the coattention encoding U .
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Figure 1: Overview of the joint many-task model predicting different linguistic outputs at succes-
sively deeper layers

2 THE JOINT MANY-TASK MODEL

In this section, we assume that the model is trained and describe its inference procedure. We begin
at the lowest level and work our way to higher layers and more complex tasks.

2.1 WORD REPRESENTATIONS

For each word w

t

in the input sentence s of length L, we construct a representation by concatenating
a word and a character embedding.

Word embeddings: We use Skip-gram (Mikolov et al., 2013) to train a word embedding matrix,
which will be shared across all of the tasks. The words which are not included in the vocabulary are
mapped to a special UNK token.

Character n-gram embeddings: Character n-gram embeddings are learned using the same skip-
gram objective function as the word vectors. We construct the vocabulary of the character n-grams in
the training data and assign an embedding for each character n-gram. The final character embedding
is the average of the unique character n-gram embeddings of a word w

t

.1 For example, the character
n-grams (n = 1, 2, 3) of the word “Cat” are {C, a, t, #BEGIN#C, Ca, at, t#END#, #BEGIN#Ca,
Cat, at#END#}, where “#BEGIN#” and “#END#” represent the beginning and the end of each
word, respectively. The use of the character n-gram embeddings efficiently provides morphological
features and information about unknown words. The training procedure for character n-grams is
described in Section 3.1. Each word is subsequently represented as x

t

, the concatenation of its
corresponding word and character vectors.

2.2 WORD-LEVEL TASK: POS TAGGING

The first layer of the model is a bi-directional LSTM (Graves & Schmidhuber, 2005; Hochreiter &
Schmidhuber, 1997) whose hidden states are used to predict POS tags. We use the following Long
Short-Term Memory (LSTM) units for the forward direction:

i

t

= � (W

i

g

t

+ b

i

) , f

t

= � (W

f

g

t

+ b

f

) , o

t

= � (W

o

g

t

+ b

o

) ,

u

t

= tanh (W

u

g

t

+ b

u

) , c

t

= i

t

� u

t

+ f

t

� c

t�1, h

t

= o

t

� tanh (c

t

) ,

(1)

1Wieting et al. (2016) used a nonlinearity, but we have observed that the simple averaging also works well.
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Abstract

Recent neural network sequence models with
softmax classifiers have achieved their best lan-
guage modeling performance only with very
large hidden states and large vocabularies. Even
then they struggle to predict rare or unseen words
even if the context makes the prediction un-
ambiguous. We introduce the pointer sentinel
mixture architecture for neural sequence models
which has the ability to either reproduce a word
from the recent context or produce a word from a
standard softmax classifier. Our pointer sentinel-
LSTM model achieves state of the art language
modeling performance on the Penn Treebank
(70.9 perplexity) while using far fewer parame-
ters than a standard softmax LSTM. In order to
evaluate how well language models can exploit
longer contexts and deal with more realistic vo-
cabularies and larger corpora we also introduce
the freely available WikiText corpus.1

1. Introduction

A major difficulty in language modeling is learning when
to predict specific words from the immediate context. For
instance, imagine a new person is introduced and two para-
graphs later the context would allow one to very accurately
predict this person’s name as the next word. For standard
neural sequence models to predict this name, they would
have to encode the name, store it for many time steps in
their hidden state, and then decode it when appropriate. As
the hidden state is limited in capacity and the optimization
of such models suffer from the vanishing gradient prob-
lem, this is a lossy operation when performed over many
timesteps. This is especially true for rare words.

Models with soft attention or memory components have
been proposed to help deal with this challenge, aiming to
allow for the retrieval and use of relevant previous hidden

1Available for download at the WikiText dataset site
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Figure 1. Illustration of the pointer sentinel-RNN mixture model.
g is the mixture gate which uses the sentinel to dictate how much
probability mass to give to the vocabulary.

states, in effect increasing hidden state capacity and pro-
viding a path for gradients not tied to timesteps. Even with
attention, the standard softmax classifier that is being used
in these models often struggles to correctly predict rare or
previously unknown words.

Pointer networks (Vinyals et al., 2015) provide one poten-
tial solution for rare and out of vocabulary (OoV) words as
a pointer network uses attention to select an element from
the input as output. This allows it to produce previously
unseen input tokens. While pointer networks improve per-
formance on rare words and long-term dependencies they
are unable to select words that do not exist in the input.

We introduce a mixture model, illustrated in Fig. 1, that
combines the advantages of standard softmax classifiers
with those of a pointer component for effective and effi-
cient language modeling. Rather than relying on the RNN
hidden state to decide when to use the pointer, as in the re-
cent work of Gülçehre et al. (2016), we allow the pointer
component itself to decide when to use the softmax vocab-
ulary through a sentinel. The model improves the state of
the art perplexity on the Penn Treebank. Since this com-
monly used dataset is small and no other freely available
alternative exists that allows for learning long range depen-
dencies, we also introduce a new benchmark dataset for
language modeling called WikiText.
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Figure 3: Real example of an input sentence sequence and the attention gates that are triggered by a
specific question. Gate values git are shown above the corresponding vectors. The gates change with
each search over inputs. We do not draw connections for gates that are close to zero. See Section
4.1 for details on the dataset that this example comes from.

to take multiple passes over the facts, focusing attention on different facts at each pass. Each pass
produces an episode, and these episodes are then summarized into the memory. Endowing our
module with this episodic component allows its attention mechanism to attend more selectively to
specific facts on each pass, as it can attend to other important facts at a later pass. It also allows for
a type of transitive inference, since the first pass may uncover the need to retrieve additional facts.

For instance, in the example in Fig. 3, we are asked Where is the football? In the first iteration,
the model ought attend to sentence 7 (John put down the football.), as the question asks about the
football. Only once the model sees that John is relevant can it reason the second iteration should
retrieve where John was. In this example, taken from a true test question on Facebook’s bAbI task,
this behavior is indeed seen. Note that the second iteration has wrongly placed some weight in
sentence 2, which makes some intuitive sense, as sentence 2 is another place John had been.

In its general form, the episodic memory module is characterized by an attention mechanism, a
function which returns an episode given the output of the attention mechanism and the facts from
the input module, and a function that summarizes the episodes into a memory.

In our work, we use a gating function as our attention mechanism. It takes as input, for each pass i, a
candidate fact ct, a previous state mi�1, and the question q to compute a gate: git = G(ct,m

i�1

, q).
The state is updated by way of a GRU: mi

= GRU(e

i
,m

i�1

), where e

i is the computed episode at
pass i. The state may be initialized randomly, but in practice we have found that initializing it to the
question vector itself helps; e.g, m0

= q. The function G returns a single scalar and is defined as
follows:

z(c,m, q) = [c,m, q, c � q, c �m, |c� q|, |c�m|, cTW (b)
q, c

T
W

(b)
m] (3)

G(c,m, q) = �

⇣
W

(2)

tanh

⇣
W

(1)

z(c,m, q) + b

(1)

⌘
+ b

(2)

⌘
(4)

To compute the episode for pass i, we employ a modified GRU over the sequence of TC facts ct,
endowed with our gates. The episode is the final state of the GRU:

h

i
t = g

i
tGRU(ct, h

i
t�1

) + (1� g

i
t)h

i
t�1

(5)

e

i
= h

i
TC

(6)

Finally, to summarize the TP episodes e

i into a memory, we use the same GRU that updates the
attention mechanism’s state: mi

= GRU(e

i
,m

i�1

), and we set the memory m as m = m

TP . This
is equivalent to setting the memory to simply the attention mechanism’s final state, but we have de-
scribed it here as its own computation to highlight the potential modularity of these subcomponents.

For datasets that mark which facts are important for a given question, such as Facebook’s bAbI
dataset, the gates of Eq. 4 can be trained supervised with a standard cross entropy classification
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Figure 3: Real example of an input sentence sequence and the attention gates that are triggered by a
specific question. Gate values git are shown above the corresponding vectors. The gates change with
each search over inputs. We do not draw connections for gates that are close to zero. See Section
4.1 for details on the dataset that this example comes from.

to take multiple passes over the facts, focusing attention on different facts at each pass. Each pass
produces an episode, and these episodes are then summarized into the memory. Endowing our
module with this episodic component allows its attention mechanism to attend more selectively to
specific facts on each pass, as it can attend to other important facts at a later pass. It also allows for
a type of transitive inference, since the first pass may uncover the need to retrieve additional facts.

For instance, in the example in Fig. 3, we are asked Where is the football? In the first iteration,
the model ought attend to sentence 7 (John put down the football.), as the question asks about the
football. Only once the model sees that John is relevant can it reason the second iteration should
retrieve where John was. In this example, taken from a true test question on Facebook’s bAbI task,
this behavior is indeed seen. Note that the second iteration has wrongly placed some weight in
sentence 2, which makes some intuitive sense, as sentence 2 is another place John had been.

In its general form, the episodic memory module is characterized by an attention mechanism, a
function which returns an episode given the output of the attention mechanism and the facts from
the input module, and a function that summarizes the episodes into a memory.

In our work, we use a gating function as our attention mechanism. It takes as input, for each pass i, a
candidate fact ct, a previous state mi�1, and the question q to compute a gate: git = G(ct,m

i�1

, q).
The state is updated by way of a GRU: mi

= GRU(e

i
,m

i�1

), where e

i is the computed episode at
pass i. The state may be initialized randomly, but in practice we have found that initializing it to the
question vector itself helps; e.g, m0

= q. The function G returns a single scalar and is defined as
follows:

z(c,m, q) = [c,m, q, c � q, c �m, |c� q|, |c�m|, cTW (b)
q, c
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To compute the episode for pass i, we employ a modified GRU over the sequence of TC facts ct,
endowed with our gates. The episode is the final state of the GRU:

h
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i
tGRU(ct, h

i
t�1

) + (1� g

i
t)h

i
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(5)

e
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Finally, to summarize the TP episodes e

i into a memory, we use the same GRU that updates the
attention mechanism’s state: mi

= GRU(e

i
,m

i�1

), and we set the memory m as m = m

TP . This
is equivalent to setting the memory to simply the attention mechanism’s final state, but we have de-
scribed it here as its own computation to highlight the potential modularity of these subcomponents.

For datasets that mark which facts are important for a given question, such as Facebook’s bAbI
dataset, the gates of Eq. 4 can be trained supervised with a standard cross entropy classification
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Figure 3: Real example of an input sentence sequence and the attention gates that are triggered by a
specific question. Gate values git are shown above the corresponding vectors. The gates change with
each search over inputs. We do not draw connections for gates that are close to zero. See Section
4.1 for details on the dataset that this example comes from.

to take multiple passes over the facts, focusing attention on different facts at each pass. Each pass
produces an episode, and these episodes are then summarized into the memory. Endowing our
module with this episodic component allows its attention mechanism to attend more selectively to
specific facts on each pass, as it can attend to other important facts at a later pass. It also allows for
a type of transitive inference, since the first pass may uncover the need to retrieve additional facts.

For instance, in the example in Fig. 3, we are asked Where is the football? In the first iteration,
the model ought attend to sentence 7 (John put down the football.), as the question asks about the
football. Only once the model sees that John is relevant can it reason the second iteration should
retrieve where John was. In this example, taken from a true test question on Facebook’s bAbI task,
this behavior is indeed seen. Note that the second iteration has wrongly placed some weight in
sentence 2, which makes some intuitive sense, as sentence 2 is another place John had been.

In its general form, the episodic memory module is characterized by an attention mechanism, a
function which returns an episode given the output of the attention mechanism and the facts from
the input module, and a function that summarizes the episodes into a memory.

In our work, we use a gating function as our attention mechanism. It takes as input, for each pass i, a
candidate fact ct, a previous state mi�1, and the question q to compute a gate: git = G(ct,m

i�1

, q).
The state is updated by way of a GRU: mi

= GRU(e

i
,m

i�1

), where e

i is the computed episode at
pass i. The state may be initialized randomly, but in practice we have found that initializing it to the
question vector itself helps; e.g, m0

= q. The function G returns a single scalar and is defined as
follows:
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q, c

T
W

(b)
m] (3)

G(c,m, q) = �

⇣
W

(2)

tanh

⇣
W

(1)

z(c,m, q) + b

(1)

⌘
+ b

(2)

⌘
(4)

To compute the episode for pass i, we employ a modified GRU over the sequence of TC facts ct,
endowed with our gates. The episode is the final state of the GRU:
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Finally, to summarize the TP episodes e

i into a memory, we use the same GRU that updates the
attention mechanism’s state: mi

= GRU(e

i
,m

i�1

), and we set the memory m as m = m

TP . This
is equivalent to setting the memory to simply the attention mechanism’s final state, but we have de-
scribed it here as its own computation to highlight the potential modularity of these subcomponents.

For datasets that mark which facts are important for a given question, such as Facebook’s bAbI
dataset, the gates of Eq. 4 can be trained supervised with a standard cross entropy classification
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specific question. Gate values git are shown above the corresponding vectors. The gates change with
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4.1 for details on the dataset that this example comes from.

to take multiple passes over the facts, focusing attention on different facts at each pass. Each pass
produces an episode, and these episodes are then summarized into the memory. Endowing our
module with this episodic component allows its attention mechanism to attend more selectively to
specific facts on each pass, as it can attend to other important facts at a later pass. It also allows for
a type of transitive inference, since the first pass may uncover the need to retrieve additional facts.

For instance, in the example in Fig. 3, we are asked Where is the football? In the first iteration,
the model ought attend to sentence 7 (John put down the football.), as the question asks about the
football. Only once the model sees that John is relevant can it reason the second iteration should
retrieve where John was. In this example, taken from a true test question on Facebook’s bAbI task,
this behavior is indeed seen. Note that the second iteration has wrongly placed some weight in
sentence 2, which makes some intuitive sense, as sentence 2 is another place John had been.

In its general form, the episodic memory module is characterized by an attention mechanism, a
function which returns an episode given the output of the attention mechanism and the facts from
the input module, and a function that summarizes the episodes into a memory.

In our work, we use a gating function as our attention mechanism. It takes as input, for each pass i, a
candidate fact ct, a previous state mi�1, and the question q to compute a gate: git = G(ct,m

i�1

, q).
The state is updated by way of a GRU: mi

= GRU(e

i
,m

i�1

), where e

i is the computed episode at
pass i. The state may be initialized randomly, but in practice we have found that initializing it to the
question vector itself helps; e.g, m0

= q. The function G returns a single scalar and is defined as
follows:

z(c,m, q) = [c,m, q, c � q, c �m, |c� q|, |c�m|, cTW (b)
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To compute the episode for pass i, we employ a modified GRU over the sequence of TC facts ct,
endowed with our gates. The episode is the final state of the GRU:
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) + (1� g
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Finally, to summarize the TP episodes e

i into a memory, we use the same GRU that updates the
attention mechanism’s state: mi

= GRU(e

i
,m

i�1

), and we set the memory m as m = m

TP . This
is equivalent to setting the memory to simply the attention mechanism’s final state, but we have de-
scribed it here as its own computation to highlight the potential modularity of these subcomponents.

For datasets that mark which facts are important for a given question, such as Facebook’s bAbI
dataset, the gates of Eq. 4 can be trained supervised with a standard cross entropy classification
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specific question. Gate values git are shown above the corresponding vectors. The gates change with
each search over inputs. We do not draw connections for gates that are close to zero. See Section
4.1 for details on the dataset that this example comes from.

to take multiple passes over the facts, focusing attention on different facts at each pass. Each pass
produces an episode, and these episodes are then summarized into the memory. Endowing our
module with this episodic component allows its attention mechanism to attend more selectively to
specific facts on each pass, as it can attend to other important facts at a later pass. It also allows for
a type of transitive inference, since the first pass may uncover the need to retrieve additional facts.

For instance, in the example in Fig. 3, we are asked Where is the football? In the first iteration,
the model ought attend to sentence 7 (John put down the football.), as the question asks about the
football. Only once the model sees that John is relevant can it reason the second iteration should
retrieve where John was. In this example, taken from a true test question on Facebook’s bAbI task,
this behavior is indeed seen. Note that the second iteration has wrongly placed some weight in
sentence 2, which makes some intuitive sense, as sentence 2 is another place John had been.

In its general form, the episodic memory module is characterized by an attention mechanism, a
function which returns an episode given the output of the attention mechanism and the facts from
the input module, and a function that summarizes the episodes into a memory.

In our work, we use a gating function as our attention mechanism. It takes as input, for each pass i, a
candidate fact ct, a previous state mi�1, and the question q to compute a gate: git = G(ct,m

i�1

, q).
The state is updated by way of a GRU: mi

= GRU(e

i
,m

i�1

), where e

i is the computed episode at
pass i. The state may be initialized randomly, but in practice we have found that initializing it to the
question vector itself helps; e.g, m0

= q. The function G returns a single scalar and is defined as
follows:

z(c,m, q) = [c,m, q, c � q, c �m, |c� q|, |c�m|, cTW (b)
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To compute the episode for pass i, we employ a modified GRU over the sequence of TC facts ct,
endowed with our gates. The episode is the final state of the GRU:
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) + (1� g
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Finally, to summarize the TP episodes e

i into a memory, we use the same GRU that updates the
attention mechanism’s state: mi

= GRU(e

i
,m

i�1

), and we set the memory m as m = m

TP . This
is equivalent to setting the memory to simply the attention mechanism’s final state, but we have de-
scribed it here as its own computation to highlight the potential modularity of these subcomponents.

For datasets that mark which facts are important for a given question, such as Facebook’s bAbI
dataset, the gates of Eq. 4 can be trained supervised with a standard cross entropy classification
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2.2 Semantic Memory

The semantic memory stores general facts about concepts based on information it receives from the
input module. For NLP, the semantic memory consists of (i) stored word concepts and (ii) facts about
them. The former is in the form of word vectors which are learned while input is being processed as
described in the section above. The latter is stored in terms of an embedded knowledge base (KB)
[9, 10, 4]. The KB can include tables with single facts like lists of city names or people names as
well as relationship triplets like (dog,has-part,tail). If a KB is being used the semantic memory will
train a max-margin objective similar to Socher et al. [4] to distinguish true facts from false ones.
This is the second part of the full DMN objective function.

2.3 Question

This module maps an input into a representation that can then be used for querying specific facts
from the input module. Assume each question consists of a sequence of Tq word vectors vt. We
compute a hidden state for each via qt = GRU(vt, qt�1

), where the GRU weights are shared with
the input module. The final question vector is defined as q = qTq .

2.4 Episodic Memory

This section introduces our novel episodic memory module. It combines the previous three modules’
outputs in order to reason over them and give the resulting knowledge to the answer module. Given
a question vector q it dynamically retrieves the necessary information over the sequence of words W
or sentences S. In many cases, the first such retrieval process brings to light the necessity to retrieve
additional facts. Hence this process potentially iterates over the inputs multiple times, each iteration
is defined as an episode. In other words, some questions require the model to do transitive inference
(TI). TI has been studied extensively in psychology and neuroscience. Interestingly, it appears that
the hippocampus, the seat of episodic memory in humans, is active during this kind of inference
[11], and disruption of the hippocampus impairs TI [12].

Generally, this memory module is a deep function that returns a memory representation from inputs:
m = EM(W,S, q) that is relevant for the question q. There are two options that are triggered based on
a simple linear classifier on the question vector: We can have a memory sequence over (i) sentences
or (ii) words. For words, the representation that is output is simply a sequence M = m

1

, . . . ,mTw ,
where each mt is computed either via a simple neural network (mt = f(W

(m)

wt)) or an additional
GRU. In this case, the answer module will output a label for each element of this sequence. This
is the case of part of speech tagging and named entity recognition and any other sequence labeling
tasks.

The more interesting scenario is when the model has to reason over complex semantic questions
involving multiple facts written in a series of natural language sentences. This case is described
in detail now. The final output will be a memory vector m, which is the last of a sequence of
increasingly complete memory vectors. At the beginning of the retrieval process, we set the initial
episode’s memory to simply be the question m

0

= q. Next we compute a series of gates, one for
each sentence in the input. The gate basically captures how relevant that sentence is for the current
question and takes into account what else the model has already stored in its memory.

For instance, in the first set of inputs of Fig. 1, we may ask Where is Mary? and would hope that
the gate for the first sentence is close to 1, whereas all other gates of sentences that do not mention
Mary would be close to 0.

The gating function G takes as input a sentence vector at time step t, the current memory vector
and the question vector: g

1

t = G(st,m
0

, q) and returns a single scalar g. We define the function
G(s,m, q) as follows:

z(s,m, q) = [s � q, s �m, |s� q|, |s�m|, s,m, q, s

T
W

(b)
q, s

T
W

(b)
m] (5)

G(s,m, q) = �

⇣
W

(2)

tanh

⇣
W

(1)

z(s,m, q) + b

(1)

⌘
+ b

(2)

⌘
(6)
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Figure 3: Real example of an input sentence sequence and the attention gates that are triggered by a
specific question. Gate values git are shown above the corresponding vectors. The gates change with
each search over inputs. We do not draw connections for gates that are close to zero. See Section
4.1 for details on the dataset that this example comes from.

to take multiple passes over the facts, focusing attention on different facts at each pass. Each pass
produces an episode, and these episodes are then summarized into the memory. Endowing our
module with this episodic component allows its attention mechanism to attend more selectively to
specific facts on each pass, as it can attend to other important facts at a later pass. It also allows for
a type of transitive inference, since the first pass may uncover the need to retrieve additional facts.

For instance, in the example in Fig. 3, we are asked Where is the football? In the first iteration,
the model ought attend to sentence 7 (John put down the football.), as the question asks about the
football. Only once the model sees that John is relevant can it reason the second iteration should
retrieve where John was. In this example, taken from a true test question on Facebook’s bAbI task,
this behavior is indeed seen. Note that the second iteration has wrongly placed some weight in
sentence 2, which makes some intuitive sense, as sentence 2 is another place John had been.

In its general form, the episodic memory module is characterized by an attention mechanism, a
function which returns an episode given the output of the attention mechanism and the facts from
the input module, and a function that summarizes the episodes into a memory.

In our work, we use a gating function as our attention mechanism. It takes as input, for each pass i, a
candidate fact ct, a previous state mi�1, and the question q to compute a gate: git = G(ct,m

i�1

, q).
The state is updated by way of a GRU: mi

= GRU(e

i
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i�1

), where e

i is the computed episode at
pass i. The state may be initialized randomly, but in practice we have found that initializing it to the
question vector itself helps; e.g, m0

= q. The function G returns a single scalar and is defined as
follows:
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To compute the episode for pass i, we employ a modified GRU over the sequence of TC facts ct,
endowed with our gates. The episode is the final state of the GRU:
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Finally, to summarize the TP episodes e

i into a memory, we use the same GRU that updates the
attention mechanism’s state: mi

= GRU(e

i
,m

i�1

), and we set the memory m as m = m

TP . This
is equivalent to setting the memory to simply the attention mechanism’s final state, but we have de-
scribed it here as its own computation to highlight the potential modularity of these subcomponents.

For datasets that mark which facts are important for a given question, such as Facebook’s bAbI
dataset, the gates of Eq. 4 can be trained supervised with a standard cross entropy classification
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Figure 3: Real example of an input sentence sequence and the attention gates that are triggered by a
specific question. Gate values git are shown above the corresponding vectors. The gates change with
each search over inputs. We do not draw connections for gates that are close to zero. See Section
4.1 for details on the dataset that this example comes from.

to take multiple passes over the facts, focusing attention on different facts at each pass. Each pass
produces an episode, and these episodes are then summarized into the memory. Endowing our
module with this episodic component allows its attention mechanism to attend more selectively to
specific facts on each pass, as it can attend to other important facts at a later pass. It also allows for
a type of transitive inference, since the first pass may uncover the need to retrieve additional facts.

For instance, in the example in Fig. 3, we are asked Where is the football? In the first iteration,
the model ought attend to sentence 7 (John put down the football.), as the question asks about the
football. Only once the model sees that John is relevant can it reason the second iteration should
retrieve where John was. In this example, taken from a true test question on Facebook’s bAbI task,
this behavior is indeed seen. Note that the second iteration has wrongly placed some weight in
sentence 2, which makes some intuitive sense, as sentence 2 is another place John had been.

In its general form, the episodic memory module is characterized by an attention mechanism, a
function which returns an episode given the output of the attention mechanism and the facts from
the input module, and a function that summarizes the episodes into a memory.

In our work, we use a gating function as our attention mechanism. It takes as input, for each pass i, a
candidate fact ct, a previous state mi�1, and the question q to compute a gate: git = G(ct,m

i�1

, q).
The state is updated by way of a GRU: mi

= GRU(e

i
,m

i�1

), where e

i is the computed episode at
pass i. The state may be initialized randomly, but in practice we have found that initializing it to the
question vector itself helps; e.g, m0

= q. The function G returns a single scalar and is defined as
follows:

z(c,m, q) = [c,m, q, c � q, c �m, |c� q|, |c�m|, cTW (b)
q, c

T
W

(b)
m] (3)

G(c,m, q) = �

⇣
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(2)

tanh

⇣
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(1)

z(c,m, q) + b

(1)

⌘
+ b

(2)
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(4)

To compute the episode for pass i, we employ a modified GRU over the sequence of TC facts ct,
endowed with our gates. The episode is the final state of the GRU:

h

i
t = g

i
tGRU(ct, h

i
t�1

) + (1� g

i
t)h

i
t�1

(5)

e

i
= h

i
TC

(6)

Finally, to summarize the TP episodes e

i into a memory, we use the same GRU that updates the
attention mechanism’s state: mi

= GRU(e

i
,m

i�1

), and we set the memory m as m = m

TP . This
is equivalent to setting the memory to simply the attention mechanism’s final state, but we have de-
scribed it here as its own computation to highlight the potential modularity of these subcomponents.

For datasets that mark which facts are important for a given question, such as Facebook’s bAbI
dataset, the gates of Eq. 4 can be trained supervised with a standard cross entropy classification
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Now, we define the first episode vector as a gate-weighted sum of all the sentence vectors:

e
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t )st, (7)

where softmax(g
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t ) =

exp(g1
t )PT

j=1 exp(g1
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. This episode vector stores the information that the model
deems relevant at the current episode. Doing this once would be enough if there was only one
relevant fact necessary to answer the question. However, consider the first question in Fig. 1 again.
In order to answer where the milk is, the model first has to retrieve the sentence that mentions that
Sarah took the milk. Now the model knows that Sarah’s whereabouts are relevant. However, that
fact was mentioned before the model knew it was relevant. Hence, we need to incorporate the first
fact in our memory, and then iterate another episode over the inputs to retrieve the second one (that
Sarah is in the garden). We use another GRU over episode vectors as defined in Eq. 7 to compute
memories: m1

= GRU(e

1

,m

0

).

This process may iterate until a classifier on each memory vector predicts that all necessary infor-
mation is collected and ends. Otherwise, the gates would compute again, this time incorporating
the last memory: g

2

t = G(st,m
1

, q), followed by the computation of the episode vector which is
given to the final memory GRU. The ability to take multiple passes over the same input but with
knowledge from previous passes allows us to do such multi-step reasoning. In the case of the some
datasets that mark which facts are important for a given question (e.g. the Facebook babI dataset)
the input gates of Eq. 6 can be trained supervised with a standard cross entropy classification error
function. The final output of the episodic memory is the final episode memory vector m = m

E .

2.5 Answer Sequence

The first hidden state of the answer sequence model is the last hidden state of the memory GRU
a

0

= m. The other hidden elements are computed with a separate GRU which takes into account
the last hidden state and the previously predicted output yt�1

as well as the question:

at = GRU([yt�1

, q], at�1

), yt = softmax(W

(a)
at), (8)

where W

(a) is a standard softmax layer. The output is simply trained with the cross entropy error
classification of the correct sequences. This is the last but most important part of the overall objective
functions.

In the word sequence tagging case, we simply predict an output at every hidden state of the memory
directly: yt = softmax(W

s
mt). Note that, with enough training data, this case can be reduced to

the standard answer sequence prediction which just outputs the same number of labels as there are
words.

2.6 Training

Training is unsupervised over word input sequnces to learn word vectors [2] and store them in se-
mantic memory. Question-answer training is cast as a supervised classification problem to minimize
cross entropy errors at either each word (in the case of sequence models) or at the end of the episodic
memory (in the case of all other tasks). Because all modules communicate over vector representa-
tions and various types of differentiable and deep neural networks with gates, the entire DMN model
can be trained via backpropagation from the the errors of the answer sequence model.

3 Experiments

3.1 Semantic Question Answering
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Figure 3: Real example of an input sentence sequence and the attention gates that are triggered by a
specific question. Gate values git are shown above the corresponding vectors. The gates change with
each search over inputs. We do not draw connections for gates that are close to zero. See Section
4.1 for details on the dataset that this example comes from.

to take multiple passes over the facts, focusing attention on different facts at each pass. Each pass
produces an episode, and these episodes are then summarized into the memory. Endowing our
module with this episodic component allows its attention mechanism to attend more selectively to
specific facts on each pass, as it can attend to other important facts at a later pass. It also allows for
a type of transitive inference, since the first pass may uncover the need to retrieve additional facts.

For instance, in the example in Fig. 3, we are asked Where is the football? In the first iteration,
the model ought attend to sentence 7 (John put down the football.), as the question asks about the
football. Only once the model sees that John is relevant can it reason the second iteration should
retrieve where John was. In this example, taken from a true test question on Facebook’s bAbI task,
this behavior is indeed seen. Note that the second iteration has wrongly placed some weight in
sentence 2, which makes some intuitive sense, as sentence 2 is another place John had been.

In its general form, the episodic memory module is characterized by an attention mechanism, a
function which returns an episode given the output of the attention mechanism and the facts from
the input module, and a function that summarizes the episodes into a memory.

In our work, we use a gating function as our attention mechanism. It takes as input, for each pass i, a
candidate fact ct, a previous state mi�1, and the question q to compute a gate: git = G(ct,m

i�1

, q).
The state is updated by way of a GRU: mi

= GRU(e

i
,m

i�1

), where e

i is the computed episode at
pass i. The state may be initialized randomly, but in practice we have found that initializing it to the
question vector itself helps; e.g, m0

= q. The function G returns a single scalar and is defined as
follows:

z(c,m, q) = [c,m, q, c � q, c �m, |c� q|, |c�m|, cTW (b)
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m] (3)
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To compute the episode for pass i, we employ a modified GRU over the sequence of TC facts ct,
endowed with our gates. The episode is the final state of the GRU:
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Finally, to summarize the TP episodes e

i into a memory, we use the same GRU that updates the
attention mechanism’s state: mi

= GRU(e

i
,m

i�1

), and we set the memory m as m = m

TP . This
is equivalent to setting the memory to simply the attention mechanism’s final state, but we have de-
scribed it here as its own computation to highlight the potential modularity of these subcomponents.

For datasets that mark which facts are important for a given question, such as Facebook’s bAbI
dataset, the gates of Eq. 4 can be trained supervised with a standard cross entropy classification
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babI 1k,	with	gate	supervision
4.1 Question Answering

The Facebook bAbI dataset is a synthetic dataset meant to test a model’s ability to retrieve facts
and reason over them. Each task tests a different skill that a good question answering model ought
to have, such as coreference resolution, deduction, and induction. Training on the bAbI dataset

Task MemNN DMN Task MemNN DMN

1: Single Supporting Fact 100 100 11: Basic Coreference 100 99.9
2: Two Supporting Facts 100 98.2 12: Conjunction 100 100
3: Three Supporting facts 100 95.2 13: Compound Coreference 100 99.8
4: Two Argument Relations 100 100 14: Time Reasoning 99 100
5: Three Argument Relations 98 99.3 15: Basic Deduction 100 100
6: Yes/No Questions 100 100 16: Basic Induction 100 99.4
7: Counting 85 96.9 17: Positional Reasoning 65 59.6
8: Lists/Sets 91 96.5 18: Size Reasoning 95 95.3
9: Simple Negation 100 100 19: Path Finding 36 34.5
10: Indefinite Knowledge 98 97.5 20: Agent’s Motivations 100 100

Mean Accuracy (%) 93.3 93.6

Table 1: Test accuracies on the bAbI dataset. MemNN numbers taken from Weston et al. [18]. The
DMN passes (accuracy > 95%) 18 tasks, whereas the MemNN passes 16.

uses the following objective function: J = ↵ECE(Gates) + �ECE(Answers), where ECE is the
standard cross-entropy cost and ↵ and � are hyperparameters. In practice, we begin training with ↵

set to 1 and � set to 0, and then later switch � to 1 while keeping ↵ at 1. We subsample the facts
from the input module by end-of-sentence tokens. The gate supervision aims to select one sentence
per pass; thus, we also experimented with modifying Eq. 6 to a simple softmax instead of a GRU.
Here, we compute the final episode vector via: e

i
=

PT
t=1

softmax(g

i
t)ct, where softmax(g

i
t) =

exp(gi
t)PT

j=1 exp(gi
j)

, and g

i
t here is the value of the gate before the sigmoid. This setting achieves better

results, likely because the softmax is better suited to picking one sentence at a time.

We list results in table 1. The DMN does worse than the MemNN on tasks 2 and 3, both tasks with
long input sequences. We suspect this is due to the recurrent input sequence model having trouble
modeling very long inputs. The MemNN does not suffer from this problem as it views each sentence
seperately. The power of the episodic memory module is evident in tasks 7 and 8, where the DMN
significantly outperforms the MemNN. Both tasks require the model to iteratively retrieve facts and
store them in a representation that slowly incorporates more of the relevant information of the input
sequence. Both models do poorly on tasks 17 and 19, though the MemNN does better. We suspect
this is due to the MemNN using n-gram features as well as explicit sequence position features.

4.2 Sequence Tagging: Part of Speech Tagging

Part-of-speech tagging is traditionally modeled as a sequence tagging problem: every word in a
sentence is to be classified into its part-of-speech class (see Fig. 1). We evaluate on the standard
Wall Street Journal dataset included in Penn-III [26]. We use the standard splits of sections 0-18
for training, 19-21 for development and 22-24 for test sets [27]. Since this is a word level tagging
task, DMN memories are produced at the word -rather than sentence- level. We compare the DMN

Model SVMTool Sogaard Suzuki et al. Spoustova et al. SCNN DMN

Acc (%) 97.15 97.27 97.40 97.44 97.50 97.56

Table 2: Test accuracies on WSJ-PTB

with the results in [27]. The DMN achieves state-of-the-art accuracy with a single model, reaching
a development set accuracy of 97.5. Ensembling the top 4 development models, the DMN gets to
97.58 dev and 97.56 test accuracies, achieving a new state-of-the-art (Table 2).
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Experiments:	Sentiment	Analysis

Stanford	Sentiment	Treebank

Test	accuracies:
• MV-RNN	and	RNTN:	
Socher et	al.	(2013)

• DCNN:	
Kalchbrenner et	al.	(2014)

• PVec:	Le	&	Mikolov.	(2014)
• CNN-MC:	Kim	(2014)
• DRNN:	Irsoy &	Cardie (2015)
• CT-LSTM:	Tai	et	al.	(2015)	

Ask Me Anything: Dynamic Memory Networks for Natural Language Processing

Task MemNN DMN

1: Single Supporting Fact 100 100
2: Two Supporting Facts 100 98.2
3: Three Supporting Facts 100 95.2
4: Two Argument Relations 100 100
5: Three Argument Relations 98 99.3
6: Yes/No Questions 100 100
7: Counting 85 96.9
8: Lists/Sets 91 96.5
9: Simple Negation 100 100
10: Indefinite Knowledge 98 97.5
11: Basic Coreference 100 99.9
12: Conjunction 100 100
13: Compound Coreference 100 99.8
14: Time Reasoning 99 100
15: Basic Deduction 100 100
16: Basic Induction 100 99.4
17: Positional Reasoning 65 59.6
18: Size Reasoning 95 95.3
19: Path Finding 36 34.5
20: Agent’s Motivations 100 100

Mean Accuracy (%) 93.3 93.6

Table 1. Test accuracies on the bAbI dataset. MemNN numbers
taken from Weston et al. (Weston et al., 2015a). The DMN passes
(accuracy > 95%) 18 tasks, whereas the MemNN passes 16.

4.1. Question Answering

The Facebook bAbI dataset is a synthetic dataset for test-
ing a model’s ability to retrieve facts and reason over them.
Each task tests a different skill that a question answering
model ought to have, such as coreference resolution, de-
duction, and induction. Showing an ability exists here is
not sufficient to conclude a model would also exhibit it on
real world text data. It is, however, a necessary condition.

Training on the bAbI dataset uses the following objective
function: J = ↵ECE(Gates) + �ECE(Answers), where
ECE is the standard cross-entropy cost and ↵ and � are hy-
perparameters. In practice, we begin training with ↵ set to
1 and � set to 0, and then later switch � to 1 while keep-
ing ↵ at 1. As described in Section 2.1, the input module
outputs fact representations by taking the encoder hidden
states at time steps corresponding to the end-of-sentence to-
kens. The gate supervision aims to select one sentence per
pass; thus, we also experimented with modifying Eq. 8 to
a simple softmax instead of a GRU. Here, we compute the
final episode vector via: ei =

PT
t=1

softmax(g

i
t)ct, where

softmax(g

i
t) =

exp(gi
t)PT

j=1 exp(gi
j)

, and g

i
t here is the value of

the gate before the sigmoid. This setting achieves better re-
sults, likely because the softmax encourages sparsity and is
better suited to picking one sentence at a time.

Task Binary Fine-grained

MV-RNN 82.9 44.4
RNTN 85.4 45.7
DCNN 86.8 48.5
PVec 87.8 48.7
CNN-MC 88.1 47.4
DRNN 86.6 49.8
CT-LSTM 88.0 51.0

DMN 88.6 52.1

Table 2. Test accuracies for sentiment analysis on the Stanford
Sentiment Treebank. MV-RNN and RNTN: Socher et al. (2013).
DCNN: Kalchbrenner et al. (2014). PVec: Le & Mikolov. (2014).
CNN-MC: Kim (2014). DRNN: Irsoy & Cardie (2015), 2014.
CT-LSTM: Tai et al. (2015)

We list results in Table 1. The DMN does worse than
the Memory Network, which we refer to from here on as
MemNN, on tasks 2 and 3, both tasks with long input se-
quences. We suspect that this is due to the recurrent input
sequence model having trouble modeling very long inputs.
The MemNN does not suffer from this problem as it views
each sentence separately. The power of the episodic mem-
ory module is evident in tasks 7 and 8, where the DMN
significantly outperforms the MemNN. Both tasks require
the model to iteratively retrieve facts and store them in a
representation that slowly incorporates more of the rele-
vant information of the input sequence. Both models do
poorly on tasks 17 and 19, though the MemNN does better.
We suspect this is due to the MemNN using n-gram vectors
and sequence position features.

4.2. Text Classification: Sentiment Analysis

The Stanford Sentiment Treebank (SST) (Socher et al.,
2013) is a popular dataset for sentiment classification. It
provides phrase-level fine-grained labels, and comes with a
train/development/test split. We present results on two for-
mats: fine-grained root prediction, where all full sentences
(root nodes) of the test set are to be classified as either very
negative, negative, neutral, positive, or very positive, and
binary root prediction, where all non-neutral full sentences
of the test set are to be classified as either positive or neg-
ative. To train the model, we use all full sentences as well
as subsample 50% of phrase-level labels every epoch. Dur-
ing evaluation, the model is only evaluated on the full sen-
tences (root setup). In binary classification, neutral phrases
are removed from the dataset. The DMN achieves state-of-
the-art accuracy on the binary classification task, as well as
on the fine-grained classification task.

In all experiments, the DMN was trained with GRU se-
quence models. It is easy to replace the GRU sequence
model with any of the models listed above, as well as in-



4.1 Question Answering

The Facebook bAbI dataset is a synthetic dataset meant to test a model’s ability to retrieve facts
and reason over them. Each task tests a different skill that a good question answering model ought
to have, such as coreference resolution, deduction, and induction. Training on the bAbI dataset

Task MemNN DMN Task MemNN DMN

1: Single Supporting Fact 100 100 11: Basic Coreference 100 99.9
2: Two Supporting Facts 100 98.2 12: Conjunction 100 100
3: Three Supporting facts 100 95.2 13: Compound Coreference 100 99.8
4: Two Argument Relations 100 100 14: Time Reasoning 99 100
5: Three Argument Relations 98 99.3 15: Basic Deduction 100 100
6: Yes/No Questions 100 100 16: Basic Induction 100 99.4
7: Counting 85 96.9 17: Positional Reasoning 65 59.6
8: Lists/Sets 91 96.5 18: Size Reasoning 95 95.3
9: Simple Negation 100 100 19: Path Finding 36 34.5
10: Indefinite Knowledge 98 97.5 20: Agent’s Motivations 100 100

Mean Accuracy (%) 93.3 93.6

Table 1: Test accuracies on the bAbI dataset. MemNN numbers taken from Weston et al. [18]. The
DMN passes (accuracy > 95%) 18 tasks, whereas the MemNN passes 16.

uses the following objective function: J = ↵ECE(Gates) + �ECE(Answers), where ECE is the
standard cross-entropy cost and ↵ and � are hyperparameters. In practice, we begin training with ↵

set to 1 and � set to 0, and then later switch � to 1 while keeping ↵ at 1. We subsample the facts
from the input module by end-of-sentence tokens. The gate supervision aims to select one sentence
per pass; thus, we also experimented with modifying Eq. 6 to a simple softmax instead of a GRU.
Here, we compute the final episode vector via: e
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results, likely because the softmax is better suited to picking one sentence at a time.

We list results in table 1. The DMN does worse than the MemNN on tasks 2 and 3, both tasks with
long input sequences. We suspect this is due to the recurrent input sequence model having trouble
modeling very long inputs. The MemNN does not suffer from this problem as it views each sentence
seperately. The power of the episodic memory module is evident in tasks 7 and 8, where the DMN
significantly outperforms the MemNN. Both tasks require the model to iteratively retrieve facts and
store them in a representation that slowly incorporates more of the relevant information of the input
sequence. Both models do poorly on tasks 17 and 19, though the MemNN does better. We suspect
this is due to the MemNN using n-gram features as well as explicit sequence position features.

4.2 Sequence Tagging: Part of Speech Tagging

Part-of-speech tagging is traditionally modeled as a sequence tagging problem: every word in a
sentence is to be classified into its part-of-speech class (see Fig. 1). We evaluate on the standard
Wall Street Journal dataset included in Penn-III [26]. We use the standard splits of sections 0-18
for training, 19-21 for development and 22-24 for test sets [27]. Since this is a word level tagging
task, DMN memories are produced at the word -rather than sentence- level. We compare the DMN

Model SVMTool Sogaard Suzuki et al. Spoustova et al. SCNN DMN

Acc (%) 97.15 97.27 97.40 97.44 97.50 97.56

Table 2: Test accuracies on WSJ-PTB

with the results in [27]. The DMN achieves state-of-the-art accuracy with a single model, reaching
a development set accuracy of 97.5. Ensembling the top 4 development models, the DMN gets to
97.58 dev and 97.56 test accuracies, achieving a new state-of-the-art (Table 2).
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