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The Limits of Single Task Learning

* Great performance improvements !
* Projects start from random
* Single unsupervised task can’t fix it

 How to express different tasks in
the same framework, e.g.

— sequence tagging
— sentence-level classification
— seg2seq?



Framework for Tackling NLP

A joint model for
comprehensive

QA



QA Examples

I: Mary walked to the bathroom. I: I think this model is incredible
I: Sandra went to the garden. Q: In French?

I: Daniel went back to the garden.  A: Je pense que ce modele est incroyable.
I: Sandra took the milk there.
Q: Where 1s the milk?

A: garden

I: Everybody 1s happy.

Q: What’s the sentiment?

A: positive
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Q: What color are the bananas?
A: Green.

Move from {Xi,yi} to {Xiaq19Yi}



First of Six Major Obstacles

* For NLP no single model architecture with
consistent state of the art results across tasks

Task State of the art model

Question answering Strongly Supervised MemNN
(babl) (Weston et al 2015)

Sentiment Analysis Tree-LSTMs (Tai et al. 2015)
(SST)

Part of speech tagging Bi-directional LSTM-CRF
(PTB-WSJ) (Huang et al. 2015)




Tackling Obstacle 1:
Dynamic Memory Network
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The Modules: Episodic Memory

hi = giGRU(s;, hi—y) + (1 — gi )hi—y

Last hidden state: mt



The Modules: Episodic Memory

e Gates are activated if sentence relevant to the
guestion or memory

zi =[sioq;siemtY|s; — ql 5 |s; — mt1]

Zi=W tanh (WW2{ + b)) 4 5
gt— eXP(Zf)
A M;

* When the end of the input is reached, the
relevant facts are summarized in another GRU




Related work

Sequence to Sequence (Sutskever et al. 2014)

Neural Turing Machines (Graves et al. 2014)

Teaching Machines to Read and Comprehend (Hermann et al. 2015)
Learning to Transduce with Unbounded Memory (Grefenstette 2015)
Structured Memory for Neural Turing Machines (Wei Zhang 2015)

Memory Networks (Weston et al. 2015)

End to end memory networks (Sukhbaatar et al. 2015)
- Main difference: Sequence models for all functions in DMN,
allowing for greater generality of tasks that be “answered”



Comparison to MemNets

Similarities:

« MemNets and DMNs have input, scoring, attention and response
mechanisms

Differences:

* For input representations MemNets use bag of word, nonlinear or
linear embeddings that explicitly encode position

* MemNets iteratively run functions for attention and response

« DMNs show that neural sequence models can be used for
input representation, attention and response mechanisms
— naturally captures position and temporality

* Enables broader range of applications



Analysis of Number of Episodes

e How many attention + memory passes are needed
in the episodic memory?
e Results on Babi dataset and Stanford Sentiment

Max task 3 task 7 task 8 sentiment
passes three-facts count lists/sets (fine grain)
0 pass 0 48.8 33.6 50.0

1 pass 0 48.8 54.0 51.5

2 pass 16.7 49.1 55.6 52.1

3 pass 64.7 83.4 83.4 50.1

5 pass 95.2 96.9 96.5 N/A




Analysis of Attention for Sentiment

e Sharper attention when 2 passes are allowed.
e Examples that are wrong with just one pass

1-iter DMN (pred: negative, ans: positive)
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Analysis of Attention for Sentiment

e Examples where full sentence context from first pass changes
attention to words more relevant for final prediction

1-iter DMN (pred: negative, ans: positive)




Analysis of Attention for Sentiment

e Examples where full sentence context from first pass changes
attention to words more relevant for final prediction

1-iter DMN (pred: positive, ans: negative)




Analysis of Attention for Sentiment

1-iter DMN (pred: very positive, ans: negative)
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Modularization Allows for Different Inputs

Answer Answer

Episodic Memory ™ Kitchen Episodic Memory > .,

Question Input Module Question
John moved to the Where is ]
e the What k|. nd
John got the apple there. apple’? of tree is
John moved to the ] in the
kitchen.
Sandra picked up the backgrou
milk there. nd?
John dropped the apple.
John moved to the
office.

Dynamic Memory Networks for Visual and Textual Question Answering,
Caiming Xiong, Stephen Merity, Richard Socher



Input Module for Images

Input Module
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Accuracy: Visual Question Answering

VQA test-dev and
test-standard:

Antol et al. (2015)

ACK Wu et al. (2015);
iBOWIMG - Zhou et al.
(2015);

DPPnet - Noh et al.
(2015); D-NMN - Andreas
et al. (2016);

SAN - Yang et al. (2015)

test-dev test-std
Method All  Y/N Other Num All
VQA
Image 28.1 64.0 3.8 04 -
Question 48.1 75.7 27.1 36.7 -
Q+I 52.6 756 374 33.7 -
LSTM Q+I 53.7 789 364 352 54.1
ACK 55.7 79.2 40.1 36.1 56.0
iIBOWIMG 55.7 765 426 35.0 55.9
DPPnet 572 80.7 41.77 37.2 574
D-NMN 579 805 43.1 374 58.0
SAN 587 79.3 46.1 36.6 58.9
DMN+ 60.3 805 483 36.8 60.4



Attention Visualization

4 g g i
L Bl ig e 5 A

What is this sculpture Answer: metal | What color are
made out of ? the bananas ?

Swrts T Poaderdinmas

What is the pattern on the Answer: stripes Did the player hit
cat 's fur on its tail ? the ball ?

Answer: yes



Attention Visualization

What is the main color on Answer: blue What type of trees are in Answer: pine
the bus ? the background ?

Is this in the wild ? Answer: no

any pink flags Answer: 2
are there ?




Attention Visualization

Which man is dressed more
flamboyantly ?

Answer: right

A
What time of day was this
picture taken ?

Answer: night



What is the girl holding ? What is the girl doing ? Is the girl wearing a hat ? What is the girl wearing ?

tennis racket playing tennis yes shorts

What is the color of the ground ? What color is the ball ? What color is her skirt ? What did the girl just hit ?

brown yellow white tennis ball



* DEMO



Obstacle 2: Joint Many-task Learning

* Fully joint multitask learning™ is hard:
— Usually restricted to lower layers
— Usually helps only if tasks are related
— Often hurts performance if tasks are not related

* meaning: same decoder/classifier
and not only transfer learning with source
target task pairs



Tackling Joint Training

* A Joint Many-Task Model:
Growing a Neural Network for Multiple NLP Tasks
Kazuma Hashimoto,

Caiming Xiong, aa—
YOShimasa TsurUOka & éz Relatedness
Richard Socher
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Model Details

* Include character n-grams and short-circuits
e State of the art purely feedforward parser

POS Tagging: Chunking;
o ) o (chk) (chk) (chk) (chk)
_ (pos) (pos) _ (pos) (pos) Yy Yo Y3 Ya
) U2 Us Ui label label label label
label label label label embedding embedding embedding embedding

embedding embedding embedding embedding
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Training Details: Regularized Idea

Chunking training

3 logp(? = alh?) + M Wenuakl|? + 8l18p0s — 8pos|®,
S t

Entailment training

= > logp(yyy = alhl® hY) + Al Wene |* + 8l16cet — et
(5,5")



New State of the Art on 4 of 5 Tasks

Method Acc.
IMT .1 97.55
Ling et al. (2015) 97.78
Kumar et al. (2016) 97.56
Ma & Hovy (2016) 97.55
S@gaard (2011) 97.50
Collobert et al. (2011) 97.29
Tsuruoka et al. (2011) 97.28
Toutanova et al. (2003) 97.27

Table 2: POS tagging results.

Method UAS LAS
Method Fl TMTon 9467 92.90
IMTas 95.77 Single 9335 9142
Segaard & Goldberg (2016) | 95.56
) . Andor et al. (2016) 94.61 92.79
Suzuki & Isozaki (2008) 95.15 .
Alberti et al. (2015) | 94.23  92.36
Collobert et al. (2011) 94.32 i
Weiss et al. (2015) 93.99 92.05
Kudo & Matsumoto (2001) 93.91
T ka et al. (2011) 93 81 Dyer et al. (2015) 93.10 90.90
surnoracta’ : Bohnet (2010) 92.88  90.71

Method MSE
IMT 11 0.233
IMTpg 0.238
Zhou et al. (2016) 0.243
Tai et al. (2015) 0.253

Table 3: Chunking results.

Table 5: Semantic relatedness results.

Table 4: Dependency results.

Method Acc.
IMT .1 86.2
IMTpE 86.8
Yin et al. (2016) 86.2
Lai & Hockenmaier (2014) 84.6

Table 6: Textual entailment results.



Obstacle 3: No Zero Shot Word Predictions

* Answers can only be predicted if they were
seen during training and part of the softmax

e Butit’s natural to learn new words in an active

conversation and systems should be able to
pick them up



Tackling Obstacle by Predicting Unseen Words

* |dea: Mixture Model of softmax and pointers:

Fed Chair Janet Yellen ... raised rates . Ms. ?7?
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p(Yellen) = g pyocab(Yellen) 4 (1 — g) pptr(Yellen)

* Pointer Sentinel Mixture Models by
Stephen Merity, Caiming Xiong, James Bradbury,

Richard Socher



Pointer-Sentinel Model

Output Distribution
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i Pointer Distribution by
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Pointer Sentinel for Language Modeling

Model ‘ Parameters Validation Test
Mikolov & Zweig (2012) - KN-5 2M* - 141.2
Mikolov & Zweig (2012) - KN5 + cache 2M* — 125.7
Mikolov & Zweig (2012) - RNN 6M* — 124.7
Mikolov & Zweig (2012) - RNN-LDA TM* — 113.7
Mikolov & Zweig (2012) - RNN-LDA + KN-5 + cache oM* — 92.0
Pascanu et al. (2013a) - Deep RNN 6M — 107.5
Cheng et al. (2014) - Sum-Prod Net S5M* — 100.0
Zaremba et al. (2014) - LSTM (medium) 20M 86.2 82.7
Zaremba et al. (2014) - LSTM (large) 66M 82.2 78.4
Gal (2015) - Variational LSTM (medium, untied) 20M 81.9+0.2 79.7+£0.1
Gal (2015) - Variational LSTM (medium, untied, MC) 20M — 78.6 £0.1
Gal (2015) - Variational LSTM (large, untied) 66M 779+03 752402
Gal (2015) - Variational LSTM (large, untied, MC) 66M — 73.4+0.0
Kim et al. (2016) - CharCNN 19M — 78.9
Zilly et al. (2016) - Variational RHN 32M 72.8 71.3
Zoneout + Variational LSTM (medium) 20M 84.4 80.6
Pointer Sentinel-LSTM (medium) 2IM 72.4 70.9




Obstacle 4: Duplicate Word Representations

* Different encodings for encoder (Word2Vec
and GloVe word vectors) and decoder
(softmax classification weights for words)

* Duplicate parameters/meaning

Output Distribution

P(le’wl, ce 77UN71)
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Tackling Obstacle by Tying Word Vectors

* Simple but theoretically motivated idea: tie
word vectors and train single weights jointly

* Tying Word Vectors and Word Classifiers: A Loss
Framework for Language Modeling, Hakan
Inan, Khashayar Khosravi, Richard Socher



Language Modeling With Tying Word Vectors

MODEL PARAMETERS VALIDATION TEST
KN-5 (Mikolov & Zweig) 2M - 141.2
KN-5 + Cache (Mikolov & Zweig) 2M - 125.7
RNN (Mikolov & Zweig) 6M - 124.7
RNN+LDA (Mikolov & Zweig) ™ - 113.7
RNN+LDA+KN-5+Cache (Mikolov & Zweig) M - 92.0
Deep RNN (Pascanu et al., 2013a) 6M - 107.5
Sum-Prod Net (Cheng et al., 2014) SM - 100.0
LSTM (medium) (Zaremba et al., 2014) 20M 86.2 82.7
LSTM (large) (Zaremba et al., 2014) 66M 82.2 78.4
VD-LSTM (medium, untied) (Gal, 2015) 20M 81.9+0.2 79.7 £0.1
VD-LSTM (medium, untied, MC) (Gal, 2015) 20M - 78.6 £0.1
VD-LSTM (large, untied) (Gal, 2015) 66M 77.9+0.3 75.2 £0.2
VD-LSTM (large, untied, MC) (Gal, 2015) 66M - 73.4+£0.0
CharCNN (Kim et al., 2015) 19M - 78.9
VD-RHN (Zilly et al., 2016) 32M 72.8 71.3
Pointer Sentinel-LSTM(medium) (Merity et al., 2016) 21M 72.4 70.9

38 Large LSTMs (Zaremba et al., 2014) 2.51B 71.9 68.7

10 Large VD-LSTMs (Gal, 2015) 660M - 68.7
VD-LSTM +REAL (medium) 14M 75.7 73.2
VD-LSTM +REAL (large) 51M 711 68.5




Obstacle 5: Questions have input
independent representations

* Interdependence needed for a comprehensive QA model
 Dynamic Coattention Networks for Question Answering by
Caiming Xiong, Victor Zhong, Richard Socher

Dynamic pointer
decoder

start index: 49
end index: 51

T\eam turbine plants

Coattention encoder -

Document encoder Question encoder
The weight of boilers and condensers generally
makes the power-to-weight ... However, most What plants create most

electric power is generated using steam turbine electric power?
plants, so that indirectly the world's industry
is




Coattention Encoder
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Stanford Question Answering Dataset

Packet_switching
The Stanford Question Answering Dataset

Starting in the late 1950s, American computer scientist Paul Baran developed the
concept Distributed Adaptive Message Block Switching with the goal to provide
a fault-tolerant, efficient routing method for telecommunication messages as part
of a research program at the RAND Corporation, funded by the US Department
of Defense. This concept contrasted and contradicted the theretofore
established principles of pre-allocation of network bandwidth, largely fortified by
the development of telecommunications in the Bell System. The new concept
found little resonance among network implementers until the independent work
of Donald Davies at the National Physical Laboratory (United Kingdom) (NPL) in
the late 1960s. Davies is credited with coining the modern name packet
switching and inspiring numerous packet switching networks in Europe in the
decade following, including the incorporation of the concept in the early
ARPANET in the United States.

What did this concept contradict

Ground Truth Answers: This concept contrasted and contradicted the
theretofore established principles of pre-allocation of network
bandwidth theretofore established principles of pre-allocation of
network bandwidth principles of pre-allocation of network bandwidth

What is Donald Davies credited with

Ground Truth Answers: Davies is credited with coining the modern name
packet switching and inspiring numerous packet switching networks in
Europe coining the modern name packet switching and inspiring
numerous packet switching networks coining the modern name packet
switching

What did Paul Baran develop in the late 1950's
Ground Truth Answers: the concept Distributed Adaptive Message Block
Switching the concept Distributed Adaptive Message Block



Results on SQUAD Competition

Model DevEM DevFl TestEM TestFl
Ensemble

DCN (Ours) 70.3 79.4 71.2 80.4
Microsoft Research Asia * — — 69.4 78.3
Allen Institute * 69.2 77.8 69.9 78.1
Singapore Management University * 67.6 76.8 67.9 77.0
Google NYC * 68.2 76.7 — —
Single model

DCN (Ours) 65.4 75.6 66.2 75.9
Microsoft Research Asia * 65.9 75.2 65.5 75.0
Google NYC * 66.4 74.9 — —
Singapore Management University * — — 64.7 73.7
Carnegie Mellon University * — — 62.5 73.3
Dynamic Chunk Reader (Yu et al., 2016) 62.5 71.2 62.5 71.0
Match-LSTM (Wang & Jiang, 2016) 59.1 70.0 59.5 70.3
Baseline (Rajpurkar et al., 2016) 40.0 51.0 40.4 51.0
Human (Rajpurkar et al., 2016) 81.4 91.0 82.3 91.2

Results are at time of ICLR submission
See https://rajpurkar.github.io/SQuAD-explorer/ for latest results




Dynamic Decoder Visualization
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Obstacle 6: RNNs are Slow

* RNNs are the basic building block for deepNLP

* |dea: Take the best and parallelizable parts of
RNNs and CNNs

* Quasi-Recurrent Neural Networks by
James Bradbury, Stephen Merity, Caiming
Xiong & Richard Socher



Quasi-Recurrent Neural Network

LSTM CNN QRNN
i i i i i i i i
Linear Convolution w Convolution F
LSTM/Linear Max-Pool | | fo-Pool | — — — — — >
Linear Convolution # Convoltion #
LSTM/Linear Max-Pool | | fo-Pool | — — — — — >
3 j j j

e Convolutions for parallelism across time:

Z; = tanh(Wixt_l + ngt) 7 — tanh(WZ " X)
f; = U(W}Xt—l + W?Xt) 9 F =0(W;xX)
0; = O'(WéXt—l + W(Q)Xt). O = U(Wo * X),

* Element-wise gated recurrence for parallelism
across channels: hy=f,oh_y + (1 - £) © 2,



Q-RNNs for Language Modeling

¢ B ette r Model | Parameters Validation Test
LSTM (medium) (Zaremba et al., 2014) 20M 86.2 82.7
Variational LSTM (medium) (Gal & Ghahramani, 2016) 20M 81.9 79.7
LSTM with CharCNN embeddings (Kim et al., 2016) 19M — 78.9
Zoneout + Variational LSTM (medium) (Merity et al., 2016) 20M 84.4 80.6
Our models
LSTM (medium) 20M 85.7 82.0
QRNN (medium) 18M 82.9 79.9
QRNN + zoneout (p = 0.1) (medium) 18M 82.1 78.3
500- ‘ ‘ -
¢ Fa Ste r EmE RNN Sequence length
— 400~ Softmax - 32 64 128 256 512
% 500 o il e | ) 8 | 5.5x 88x 1L0x 124x 16.9x
m & 16 | 5.5x  6.7x 7.8x 8.3x 10.8x
E . 23| 42x 45x  49x  49x  64x
£ S 64 |30x 3.0x 3.0x 3.0x 37x
F 100. — 3 128 | 21x 19x  20x  20x  24x
256 | 14x 14x 1.3x 1.3x 1.3x

LSTM LSTM (CuDNN) QRNN



Q-RNNs for Sentiment Analysis

Better and faster
than LSTMs

More interpretable

Example:

Initial positive review
Review starts out positive

o
o

Model | Time / Epoch (s) Test Acc (%)
BSVM-bi (Wang & Manning, 2012) - 91.2
2 layer sequential BoW CNN (Johnson & Zhang, 2014) — 92.3
Ensemble of RNNs and NB-SVM (Mesnil et al., 2014) — 92.6
2-layer LSTM (Longpre et al., 2016) — 87.6
Residual 2-layer bi-LSTM (Longpre et al., 2016) — 90.1
Our models
Deeply connected 4-layer LSTM (cuDNN optimized) 480 90.9
Deeply connected 4-layer QRNN 150 914
D.C. 4-layer QRNN with k = 4 160 91.1
HOJHII!-IIII! TR 0T I T (CTTRARR TRRrR R T AT T AT AL
U TICTEIL T E IR AR R
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At 117: “not exactly a bad story”

At 158: “I recommend this movie to everyone, even if you’ve
never played the game”
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Comprehensive Question Answering

Framework for tackling the limits of deepNLP

Fed Chair Janet Yellen ... raised rates . Ms. 77??
A A A y A A ’
a I I |
€ -
<] Sentinel
m s
Dptr(Yellen) g
P = aardvark Bernanke Rosenthal Yellen zebra
§ Z 4 * i ' ! -
G o | 1 !
0 ‘ —,_m’IJ Lﬂ m—]_r MF\_D_r
Dyocab(Yellen)
p(Yellen) = g pyocab(Yellen) + (1 — g) pptr(Yellen)
QRNN
D: ?
400000 weniZ - Convolution
doct?ljr1+e1n AP
fo-Pool = —— — — —>
Convolution #
Q:
fo-Pool — — — — — —>»







Tackling Obstacle 1:
Dynamic Memory Network

) ) > ) s Answer module

Episodic Memory , , ,
e e, e; e, e; e, e e;
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Input

The Modules
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Input Module

Standard GRU. The last hidden state of each sentence is accessible.



The Modules: Question

dt — GRU(%, C]t—l)f



The Modules: Episodic Memory

* If summary is insufficient to answer the question,
repeat sequence over input

Episodic Memory ,
€
Module 0.0

2 2 2 2 2 2 2
e, e; e, e € e €, 5
I 0.3 0.0 0.0 0.0 I 0.9 0.0 0.0 Im
1 1 1 1 1
e, % e; e, e; f 6
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The Modules: Answer
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yr = softmaz(W ¥ ay)
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babl 1k, with gate supervision

Task MemNN DMN | Task MemNN DMN
1: Single Supporting Fact 100 100 | 11: Basic Coreference 100 99.9
2: Two Supporting Facts 100 98.2 | 12: Conjunction 100 100
3: Three Supporting facts 100 95.2 | 13: Compound Coreference 100 99.8
4: Two Argument Relations 100 100 | 14: Time Reasoning 99 100
5: Three Argument Relations 98 99.3 | 15: Basic Deduction 100 100
6: Yes/No Questions 100 100 16: Basic Induction 100 994
7: Counting 85 96.9 | 17: Positional Reasoning 65 59.6
8: Lists/Sets 91 96.5 | 18: Size Reasoning 95 95.3
9: Simple Negation 100 100 | 19: Path Finding 36 34.5
10: Indefinite Knowledge 98 97.5 | 20: Agent’s Motivations 100 100
Mean Accuracy (%) 93.3 93.6




Experiments: Sentiment Analysis

Stanford Sentiment Treebank

Task Binary Fine-grained
_ MV-RNN 82.9 44.4
Test accuracies: RNTN 35 4 457
e MV-RNN and RNTN: DCNN 86.8 48.5
Socher et al. (2013) PVec 87.8 48.7
e DCNN: CNN-MC  88.1 47.4
Kalchbrenner et al. (2014) BTREETM Sg'g g?'g

e PVec: Le & Mikolov. (2014)

DMN 88.6 52.1

e CNN-MC: Kim (2014)

e DRNN: Irsoy & Cardie (2015)
e CT-LSTM: Tai et al. (2015)



Experiments: POS Tagging

e PTB WSJ, standard splits
e Episodic memory does not require multiple
passes, single pass enough

Model SVMTool Sogaard Suzukietal. Spoustovaetal. SCNN | DMN

Acc (%) 97.15 97.27 97.40 97.44 97.50 | 97.56




