Nicolas Paprenot: A Marauder’s Map of Security and Privacy in Machine Learning

Abstract

There is growing recognition that machine learning (ML) exposes new security and privacy vulnerabilities in software systems, yet the technical community’s understanding of the nature and extent of these vulnerabilities remains limited but expanding. In this talk, we explore the threat model space of ML algorithms through the lens of Saltzer and Schroeder’s principles for the design of secure computer systems. This characterization of the threat space prompts an investigation of current and future research directions. We structure our discussion around three of these directions, which we believe are likely to lead to significant progress. The first encompasses a spectrum of approaches to verification and admission control, which is a prerequisite to enable fail-safe defaults in machine learning systems. The second seeks to design mechanisms for assembling reliable records of compromise that would help understand the degree to which vulnerabilities are exploited by adversaries, as well as favor psychological acceptability of machine learning applications. The third pursues formal frameworks for security and privacy in machine learning, which we argue should strive to align machine learning goals such as generalization with security and privacy desiderata like robustness or privacy. Key insights resulting from these three directions pursued both in the ML and security communities are identified and the effectiveness of approaches are related to structural elements of ML algorithms and the data used to train them. We conclude by systematizing best practices in our community.

Bio

Nicolas Papernot is a research scientist at Google Brain working on the security and privacy of machine learning. He will join the University of Toronto and Vector Institute as an assistant professor and Canada CIFAR AI Chair in the Fall 2019. He earned his Ph.D. in Computer Science and Engineering at the Pennsylvania State University, working with Prof. Patrick McDaniel and supported by a Google PhD Fellowship in Security and Privacy. Nicolas received a best paper award at ICLR 2017. He is also the co-author of CleverHans, an open-source library widely adopted in the technical community to benchmark machine learning in adversarial settings, and tf.Privacy, an open-source library for training differentially private models with TensorFlow. In 2016, he received his M.S. in Computer Science and Engineering from the Pennsylvania State University and his M.S. in Engineering Sciences from the Ecole Centrale de Lyon.

Justin Gilmer: Adversarial Examples Are a Natural Consequence of Test Error in Noise

Abstract

Over the last few years, the phenomenon of adversarial examples — maliciously constructed inputs that fool trained machine learning models — has captured the attention of the research community, especially when the adversary is restricted to small modifications of a correctly handled input. Less surprisingly, image classifiers also lack human-level performance on randomly corrupted images, such as images with additive Gaussian noise. In this paper we provide both empirical and theoretical evidence that these are two manifestations of the same underlying phenomenon, establishing close connections between the adversarial robustness and corruption robustness research programs. This suggests that improving adversarial robustness should go hand in hand with improving performance in the presence of more general and realistic image corruptions. Based on our results we recommend that future adversarial defenses consider evaluating the robustness of their methods to distributional shift with benchmarks such as Imagenet-C.

Bio

Justin Gilmer attended the inaugural Brain Residency program and is now a research scientist at Google Brain. He’s interested in a number of topics in machine learning with recent focus on graph neural networks and model robustness. His received his PhD in theoretical mathematics from Rutgers University where he worked with Michael Saks.