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Machine learning is transforming computing

Speech

Natural Language Understanding

Question Answering

Game Playing (Go)

Vision

Autonomous Vehicles

Control

Ad Placement
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Whole research fields rendered irrelevant



Hardware and Data enable DNNs



5

The Need for Speed

IMAGE RECOGNITION SPEECH RECOGNITION

Important Property of Neural Networks

Results get better with 

more data +
bigger models +

more computation

(Better algorithms, new insights and 
improved techniques always help, too!)

2012
AlexNet

2015
ResNet

152 layers
22.6 GFLOP
~3.5% error

8 layers
1.4 GFLOP
~16% Error

16X
Model

2014
Deep Speech 1

2015
Deep Speech 2

80 GFLOP
7,000 hrs of Data

~8% Error

10X
Training Ops

465 GFLOP
12,000 hrs of Data

~5% Error
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DNN primer
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WHAT NETWORK? DNNS, CNNS, AND RNNS
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DNN, KEY OPERATION IS DENSE M X V

Wij aj

weight matrix

Input activations

bi

O
utput activations

= x
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CNNS – For image inputs, convolutional stages 
act as trained feature detectors
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AijAij

CNNS require convolution in addition to M X V

Axyk

Input maps 
Axyc

Kernels
Multiple 3D
Kuvkj

AijAijBxyk

x

Output maps
Bxyk
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4 Distinct Sub-problems
Training Inference
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32b FP – large batches
Large Memory Footprint
Minimize Training Time

8b Int – small (unit) batches
Meet real-time constraint
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DNNs are Trivially Parallelized



Lots of parallelism in a DNN

• Inputs
• Points of a feature map
• Filters
• Elements within a filter

• Multiplies within layer are independent
• Sums are reductions
• Only layers are dependent
• No data dependent operations 

=> can be statically scheduled



Data Parallel – Run multiple inputs in parallel

• Doesn’t affect latency for one input
• Requires P-fold larger batch size
• For training requires coordinated weight update



Parameter Update

Large Scale Distributed Deep Networks, Jeff Dean et al., 2013

Parameter Server

Model!
Workers

Data!
Shards

p’ = p + ∆p

∆p p’

One method to achieve scale is parallelization

Large scale distributed deep networks 
J Dean et al (2012)



Model-Parallel Convolution – by output region (x,y)

AijAijAxyk

Input maps
Axyk

Kernels
Multiple 3D
Kuvkj

Bxyj

x

Output maps
Bxyj

6D Loop
Forall region XY

For each output map j
For each input map k

For each pixel x,y in XY
For each kernel element u,v

Bxyj += A(x-u)(y-v)k x Kuvkj

Bxyj Bxyj

Bxyj Bxyj

Bxyj

Bxyj Bxyj

Bxyj Bxyj



Model Parallel Fully-Connected Layer (M x V)

Wij

aj

weight matrix

Input activations

bi

O
utput activations

= x
bi Wij



18

GPUs



Pascal GP100

• 10 TeraFLOPS FP32

• 20 TeraFLOPS FP16

• 16GB HBM – 750GB/s

• 300W TDP

• 67GFLOPS/W (FP16)

• 16nm process

• 160GB/s NV Link 



NVIDIA CONFIDENTIAL. DO NOT DISTRIBUTE.

NVIDIA DGX-1
WORLD’S FIRST DEEP LEARNING SUPERCOMPUTER

170 TFLOPS
8x Tesla P100 16GB
NVLink Hybrid Cube Mesh
Optimized Deep Learning 
Software
Dual Xeon
7 TB SSD Deep Learning Cache
Dual 10GbE, Quad IB 100Gb
3RU – 3200W



Facebook’s deep learning machine

• Purpose-Built for Deep Learning Training 

2x Faster Training for Faster Deployment

2x Larger Networks for Higher Accuracy

Powered by Eight Tesla M40 GPUs

Open Rack Compliant

Serkan Piantino
Engineering Director of Facebook AI Research

“Most of the major advances in machine learning and AI in the 
past few years have been contingent on tapping into powerful 

GPUs and huge data sets to build and train advanced models”



NVIDIA Parker

• 1.5 Teraflop FP16

• 4GB of LPDDR4 @ 25.6 GB/s

• 15 W TDP (1W idle, <10W typical)

• 100GFLOPS/W (FP16)

• 16nm process

ARM v8
CPU

COMPLEX
(2x Denver 2 + 4x A57)

Coherent HMP

SECURITY
ENGINES 2D ENGINE

4K60
VIDEO

ENCODER

4K60
VIDEO

DECODER

AUDIO
ENGINE

DISPLAY
ENGINES

IMAGE 
PROC (ISP)

128-bit 
LPDDR4

BOOT and 
PM PROC

GigE
Ethernet

MAC

I/OSafety 
Engine
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XAVIER
AI SUPERCOMPUTER SOC

7 Billion Transistors 16nm FF

8 Core Custom ARM64 CPU

512 Core Volta GPU

New Computer Vision Accelerator

Dual 8K HDR Video Processors

Designed for ASIL C Functional Safety
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DRIVE PX 2

2 PARKER + 2 PASCAL GPU  |  20 TOPS DL  |  120 SPECINT  |  80W

XAVIER

20 TOPS DL  |  160 SPECINT  |  20W

XAVIER
AI SUPERCOMPUTER SOC

ONE ARCHITECTURE



Parallel GPUs on Deep Speech 2

binds one process to each GPU. These processes then exchange gradient matrices during the back-
propagation with by using all-reduce, which exchanges a matrix between multiple processes and
sums the result so that at the end, each process has a copy of the sum of all matrices from all pro-
cesses.

We find synchronous SGD useful because it is reproducible and deterministic. We have found
that the appearance of non-determinism in our system often signals a serious bug, and so having
reproducibility as a goal has greatly facilitates debugging. In contrast, asynchronous methods such
as asynchronous SGD with parameter servers as found in Dean et al. [17] typically do not provide
reproducibility and are therefore more difficult to debug. Synchronous SGD is simple to understand
and implement. It scales well as we add multiple nodes to the training process.

20 21 22 23 24 25 26 27

GPUs
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9-7 (1760)

Figure 4: Scaling comparison of two networks—a 5 layer model with 3 recurrent layers containing 2560
hidden units in each layer and a 9 layer model with 7 recurrent layers containing 1760 hidden units in each
layer. The times shown are to train 1 epoch. The 5 layer model trains faster because it uses larger matrices and
is more computationally efficient.

Figure 4 shows that time taken to train one epoch halves as we double the number of GPUs that
we train on, thus achieving near-linear weak scaling. We keep the minibatch per GPU constant at
64 during this experiment, effectively doubling the minibatch as we double the number of GPUs.
Although we have the ability to scale to large minibatches, we typically use either 8 or 16 GPUs
during training with a minibatch of 512 or 1024, in order to converge to the best result.

Since all-reduce is critical to the scalability of our training, we wrote our own implementation of
the ring algorithm [46, 63] for higher performance and better stability. Our implementation avoids
extraneous copies between CPU and GPU, and is fundamental to our scalability. We configure
OpenMPI with the smcuda transport that can send and receive buffers residing in the memory of
two different GPUs by using GPUDirect. When two GPUs are in the same PCI root complex,
this avoids any unnecessary copies to CPU memory. This also takes advantage of tree-structured
interconnects by running multiple segments of the ring concurrently between neighboring devices.
We built our implementation using MPI send and receive, along with CUDA kernels for the element-
wise operations.

Table 7 compares the performance of our all-reduce implementation with that provided by OpenMPI
version 1.8.5. We report the time spent in all-reduce for a full training run that ran for one epoch
on our English dataset using a 5 layer, 3 recurrent layer architecture with 2560 hidden units for all
layers. In this table, we use a minibatch of 64 per GPU, expanding the algorithmic minibatch as we
scale to more GPUs. We see that our implementation is considerably faster than OpenMPI’s when
the communication is within a node (8 GPUs or less). As we increase the number of GPUs and
increase the amount of inter-node communication, the gap shrinks, although our implementation is
still 2-4X faster.

All of our training runs use either 8 or 16 GPUs, and in this regime, our all-reduce implementation
results in 2.5⇥ faster training for the full training run, compared to using OpenMPI directly. Opti-
mizing all-reduce has thus resulted in important productivity benefits for our experiments, and has
made our simple synchronous SGD approach scalable.

13

Baidu, Deep Speech 2: End-to-End Speech Recognition in English and Mandarin, 2015 
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Reduced Precision



How Much Precision is Needed for Dense M x V?

Wij aj

weight matrix

Input activations

bi

O
utput activations

= x

𝑏"=𝑓 ∑ 𝑤"&�
& 𝑎"



Number Representation

FP32

FP16

Int32

Int16

Int8

S E M
1 8 23

Range Accuracy

10-38 - 1038 .000006%

6x10-5 - 6x104 .05%

0 – 2x109 ½

0 – 6x104 ½

0 – 127 ½

S E M
1 5 10

M
31

S

S M

1

1 15

S M
1 7



Cost of Operations

Operation: Energy (pJ)
8b Add 0.03
16b Add 0.05
32b Add 0.1
16b FP Add 0.4
32b FP Add 0.9
8b Mult 0.2
32b Mult 3.1
16b FP Mult 1.1
32b FP Mult 3.7
32b SRAM Read (8KB) 5
32b DRAM Read 640

Area (µm2)
36
67
137
1360
4184
282
3495
1640
7700
N/A
N/A

Energy numbers are from Mark Horowitz “Computing’s Energy Problem (and what we can do about it)”, ISSCC 2014
Area numbers are from synthesized result using Design Compiler under TSMC 45nm tech node. FP units used DesignWare Library.



The Importance of Staying Local
LPDDR DRAM

GB

On-Chip SRAM
MB

Local SRAM
KB

640pJ/word

50pJ/word

5pJ/word



Mixed Precision

wij

aj

x bi+

Store weights as 4b using
Trained quantization, 

decode to 16b

Store activations as 16b 16b x 16b multiply
round result to 16b

accumulate 24b or 32b 
to avoid saturation

Batch normalization important to ‘center’ dynamic range



Weight Update

gj

aj

x
x

a

Learning rate may 
be very small 
(10-5 or less)

Dw rounded to 
zero

No learning!

wij+Dwij



Stochastic Rounding

gj

aj

x
x

a

Learning rate may 
be very small 
(10-5 or less)

Dw very small
wij+Dwij SR Dw’ij

E(Dw’ij) = Dwij



Reduced Precision For Training

Deep Learning with Limited Numerical Precision

Figure 2. MNIST dataset using CNNs: Training error (a) and the test error (b) for training using fixed-point number
representation and rounding mode set to either “Round to nearest” or “Stochastic rounding”. The word length for fixed-
point numbers WL is kept fixed at 16 bits and results are shown for di↵erent fractional (integer) lengths for weights and
weight updates: 12(4), and 14(2) bits. Layer outputs use h6, 10i format in all cases. Results using float are also shown
for comparison.

for training a given network. Moreover, the use of the
same word length for all network variables carries with
it the added advantage of simplifying the hardware
implementation.

4.1. MNIST

4.1.1. Fully connected DNN

In the first set of experiments, we construct a fully
connected neural network with 2 hidden layers, each
containing 1000 units with ReLU activation function
and train this network to recognize the handwritten
digits from the MNIST dataset. This dataset comprises
of 60, 000 training images and 10, 000 test images –
each image is 28 x 28 pixels containing a digit from
0 to 9. The pixel values are normalized to lie in
the [0, 1] range. No other form of data pre-processing
or augmentation is performed. The weights in each
layer are initialized by sampling random values from
N (0, 0.01) while the bias vectors are initialized to
0. The network is trained using minibatch stochastic
gradient descent (SGD) with a minibatch size of 100
to minimize the cross entropy objective function. The
float baseline achieves a test error of 1.4%.

Next, we retrain the network using fixed-point com-
putations and set WL to 16 bits. Figure 1 shows the
results for the two rounding modes: Round-to-nearest
and Stochastic rounding. In both cases, allocating 14
bits to the fractional part4 produces no noticeable

4Using up 14 bits for the fractional part leaves only 2
bits (including the sign bit) for representing the integer
portion of the number. This does not seem to adversely
a↵ect the network performance.

degradation in either the convergence rate or the clas-
sification accuracy. A reduction in the precision below
14 bits begins to negatively impact the network’s
ability to learn when the round-to-nearest scheme is
adopted. This is primarily because at reduced frac-
tional precision, most of the parameter updates are
rounded down to zero. In contrast, the stochastic
rounding preserves the gradient information, atleast
statistically, and the network is able to learn with as
few as 8 bits of precision without any significant loss in
performance. Note, however, at a precision lower than
8 bits, even the stochastic rounding scheme is unable
to fully prevent the loss of gradient information.

4.1.2. CNN

Using the MNIST dataset, we also evaluate a CNN
with an architecture similar to LeNet-5 (LeCun et al.,
1998). It comprises of 2 convolutional layers with 5x5
filters and ReLU activation function. The first layer
has 8 feature maps while the second convolutional
layer produces 16 feature maps. Each convolutional
layer is followed by a pooling/subsampling layer. The
pooling layers implement the max pooling function
over non-overlapping pooling windows of size 2x2. The
output of the second pooling layer feeds into a fully
connected layer consisting of 128 ReLU neurons, which
is then connected into a 10-way softmax output layer.

For training this network, we adopt an exponentially
decreasing learning rate – scaling it by a factor of 0.95
after every epoch of training. The learning rate for
the first epoch is set to 0.1. Momentum (p = 0.9)
is used to speed up SGD convergence. The weight
decay parameter is set to 0.0005 for all layers. When

5

S. Gupta et.al “Deep Learning with Limited Numerical 
Precision” ICML 15
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Pruning



Pruning

pruning 
neurons

pruning 
synapses

after pruningbefore pruning

Han et al. Learning both Weights and Connections for Efficient Neural Networks, NIPS 2015



Retrain to Recover Accuracy

Train Connectivity

Prune Connections

Train Weights

-4.5%
-4.0%
-3.5%
-3.0%
-2.5%
-2.0%
-1.5%
-1.0%
-0.5%
0.0%
0.5%

40% 50% 60% 70% 80% 90% 100%

Ac
cu

ra
cy

 L
os

s

Parametes Pruned Away

L2 regularization w/o retrain L1 regularization w/o retrain 
L1 regularization w/ retrain L2 regularization w/ retrain 
L2 regularization w/ iterative prune and retrain 

PrunedHan et al. Learning both Weights and Connections for Efficient Neural Networks, NIPS 2015



Pruning of VGG-16



Pruning Neural Talk and LSTM



Speedup of Pruning on CPU/GPU

Intel Core i7 5930K: MKL CBLAS GEMV, MKL SPBLAS CSRMV
NVIDIA GeForce GTX Titan X: cuBLAS GEMV, cuSPARSE CSRMV
NVIDIA Tegra K1: cuBLAS GEMV, cuSPARSE CSRMV



Trained Quantization
(Weight Sharing)

Train Connectivity

Prune Connections

Train Weights

Cluster  the Weights

Generate Code Book

Quantize the Weights 
with Code Book

Retrain Code Book

Pruning: less quantity
Quantization: less precision

100% Size 10% Size 3.7% Size

   same 
accuracy

   same 
accuracy

original 
network

Han et al. Deep Compression: Compressing Deep Neural Networks with Pruning, Trained 
Quantization and Huffman Coding, arXiv 2015



Weight Sharing via K-Means
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Han et al. Deep Compression: Compressing Deep Neural Networks with Pruning, Trained 
Quantization and Huffman Coding, arXiv 2015



Trained Quantization

Han et al. Deep Compression: Compressing Deep Neural Networks with Pruning, Trained 
Quantization and Huffman Coding, arXiv 2015



Bits per Weight



Pruning + Trained Quantization



30x – 50x Compression Means

• Complex DNNs can be put in mobile applications (<100MB total)
– 1GB network (250M weights) becomes 20-30MB

• Memory bandwidth reduced by 30-50x
– Particuarly for FC layers in real-time applications with no reuse

• Memory working set fits in on-chip SRAM
– 5pJ/word access vs 640pJ/word
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Efficient Inference Engine



Sparse Matrix Representation
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Sparse Matrix Representation
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EIE Architecture



Scalability

1

10

100

Alex-6 Alex-7 Alex-8 VGG-6 VGG-7 VGG-8 NT-We NT-Wd NT-LSTM

Sp
ee
du
p

1PE 2PEs 4PEs 8PEs 16PEs 32PEs 64PEs 128PEs 256PEs

Figure 11. System scalability. It measures the speedups with different numbers of PEs. The speedup is near-linear.

VII. DISCUSSION

Many engines have been proposed for Sparse Matrix-
Vector multiplication (SPMV) and the existing trade-offs
on the targeted platforms are studied [21], [31]. There
are typically three approaches to partition the workload
for matrix-vector multiplication. The combination of these
methods with storage format of the Matrix creates a design
space trade-off.

A. Workload Partitioning

The first approach is to distribute matrix columns to PEs.
Each PE handles the multiplication between its columns of
W and corresponding element of a to get a partial sum
of the output vector b. The benefit of this solutions is that
each element of a is only associated with one PE — giving
full locality for vector a. The drawback is that a reduction
operation between PEs is required to obtain the final result.

A second approach (ours) is to distribute matrix rows to
PEs. A central unit broadcasts one vector element a

j

to all
PEs. Each PE computes a number of output activations b

i

by
performing inner products of the corresponding row of W ,
W

j

that is stored in the PE with vector a. The benefit of this
solutions is that each element of b is only associated with
one PE — giving full locality for vector b. The drawback is
that vector a needs to be broadcast to all PEs.

A third approach combines the previous two approaches
by distributing blocks of W to the PEs in 2D fashion.
This solution is more scalable for distributed systems where
communication latency cost is significant [32]. This way
both of the collective communication operations ”Broadcast”
and ”Reduction” are exploited but in a smaller scale and
hence this solution is more scalable.

The nature of our target class of application and its
sparsity pattern affects the constraints and therefore our
choice of partitioning and storage. The density of W is
⇡ 10%, and the density of a is ⇡ 30%, both with random
distribution. Vector a is stored in normal dense format and
contains 70% the zeros in the memory, because for different
input, a

j

’s sparsity pattern differs. We want to utilize the
sparsity of both W and a.

The first solution suffers from load imbalance given that
vector a is also sparse. Each PE is responsible for a column.
PE

j

will be completely idle if their corresponding element
a
j

is zero. On top of the Idle PEs, this solution requires
across-PE reduction and extra level of synchronization.

Since the SPMV engine, has a limited number of PEs,
there won’t be a scalability issue to worry about. However,
the hybrid solution will suffer from inherent complexity and
still possible load imbalance since multiple PEs sharing the
same column might remain idle.

We build our solution based on the second distribution
scheme taking the 30% density of vector a into account. Our
solution aims to perform computations by in-order look-up
of nonzeros in a. Each PE gets all the non-zero elements of
a in order and performs the inner products by looking-up
the matching element that needs to be multiplied by a

j

, W
j

.
This requires the matrix W being stored in CSC format so
the PE can multiply all the elements in the j-th column of
W by a

j

.

B. Scalability

As the matrix gets larger, the system can be scaled up by
adding more PEs. Each PE has local SRAM storing distinct
rows of the matrix without duplication, so the SRAM is
efficiently utilized.

Wire delay increases with the square root of the number of
PEs, however, this is not a problem in our architecture. Since
EIE only requires one broadcast over the computation of the
entire column, which takes many cycles. Consequently, the
broadcast is not on the critical path and can be pipelined
because FIFOs decouple producer and consumer.

Figure 11 shows EIE achieves good scalability on all
benchmarks except NT-We. NT-We is very small (4096 ⇥
600). Dividing the columns of size 600 and sparsity 10% to
64 or more PEs causes serious load imbalance.

Figure 12 shows the number of padding zeros with
different number PEs. Padding zero occur when the jump
between two consecutive non-zero element in the sparse
matrix is larger than 16, the largest number that 4 bits can
encode. Padding zeros are considered non-zero and lead
to wasted computation. Using more PEs reduces padding
zeros, because the distance between non-zero elements get
smaller due to matrix partitioning, and 4-bits encoding a
max distance of 16 will more likely be enough.

Figure 13 shows the load balance with different number
of PEs, measured with FIFO depth equal to 8. With more
PEs, load balance becomes worse, but padding zero overhead
decreases, which yields efficiency for most benchmarks
remain constant. The scalability result is plotted in figure
11.



Load Balance

Table IV
WALL CLOCK TIME COMPARISON BETWEEN CPU, GPU, MOBILE GPU AND EIE. UNIT: µS

Platform Batch Matrix AlexNet VGG16 NT-
Size Type FC6 FC7 FC8 FC6 FC7 FC8 We Wd LSTM

CPU 1 dense 7516.2 6187.1 1134.9 35022.8 5372.8 774.2 605.0 1361.4 470.5

(Core sparse 3066.5 1282.1 890.5 3774.3 545.1 777.3 261.2 437.4 260.0

i7-5930k) 64 dense 318.4 188.9 45.8 1056.0 188.3 45.7 28.7 69.0 28.8
sparse 1417.6 682.1 407.7 1780.3 274.9 363.1 117.7 176.4 107.4

GPU 1 dense 541.5 243.0 80.5 1467.8 243.0 80.5 65 90.1 51.9

(Titan X)
sparse 134.8 65.8 54.6 167.0 39.8 48.0 17.7 41.1 18.5

64 dense 19.8 8.9 5.9 53.6 8.9 5.9 3.2 2.3 2.5
sparse 94.6 51.5 23.2 121.5 24.4 22.0 10.9 11.0 9.0

mGPU 1 dense 12437.2 5765.0 2252.1 35427.0 5544.3 2243.1 1316 2565.5 956.9

(Tegra K1)
sparse 2879.3 1256.5 837.0 4377.2 626.3 745.1 240.6 570.6 315

64 dense 1663.6 2056.8 298.0 2001.4 2050.7 483.9 87.8 956.3 95.2
sparse 4003.9 1372.8 576.7 8024.8 660.2 544.1 236.3 187.7 186.5

EIE Theoretical Time 28.1 11.7 8.9 28.1 7.9 7.3 5.2 13.0 6.5
Actual Time 30.3 12.2 9.9 34.4 8.7 8.4 8.0 13.9 7.5

0%
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80%
100%

Alex-6 Alex-7 Alex-8 VGG-6 VGG-7 VGG-8 NT-We NT-Wd NT-LSTM

Lo
ad
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al
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FIFO=1 FIFO=2 FIFO=4 FIFO=8 FIFO=16 FIFO=32 FIFO=64 FIFO=128 FIFO=256

Figure 8. Load efficiency improves as FIFO size increases. When FIFO deepth>8, the marginal gain quickly diminishes. So we choose FIFO depth=8.

The total SRAM capacity (Spmat+Ptr+Act) of each EIE
PE is 162KB. The activation SRAM is 2KB storing ac-
tivations. The Spmat SRAM is 128KB storing the com-
pressed weights and indices. Each weight is 4bits, each
index is 4bits. Weights and indices are grouped to 8bits and
addressed together. The Spmat access width is optimized
at 64bits. The Ptr SRAM is 32KB storing the pointers in
the CSC format. In the steady state, both Spmat SRAM
and Ptr SRAM are accessed every 64/8 = 8 cycles. The
area and power is dominated by SRAM, the ratio is 93%
and 59% respectively. Each PE is 0.638mm2 consuming
9.157mW . Each group of 4 PEs needs a LNZD unit for
nonzero detection. A total of 21 LNZD units are needed for
64 PEs (16+4+1 = 21). Synthesized result shows that one
LNZD unit takes only 0.023mW and an area of 189um2,
less than 0.3% of a PE.

A. Performance

We compare EIE against CPU, desktop GPU and the
mobile GPU on 9 benchmarks selected from AlexNet, VGG-
16 and Neural Talk. The overall results are shown in Fig-
ure 6. There are 7 columns for each benchmark, comparing
the computation time of EIE on compressed network over
CPU / GPU / TK1 on uncompressed / compressed network.
Time is normalized to CPU. EIE significantly outperforms
the general purpose hardware and is, on average, 189⇥, 13⇥,
307⇥ faster than CPU, GPU and mobile GPU respectively.

EIE’s theoretical computation time is calculated by divid-
ing workload GOPs by peak throughput. The actual compu-
tation time is around 10% more than the theoretical compu-
tation time due to load imbalance. In Fig. 6, the comparison
with CPU / GPU / TK1 is reported using actual computation

time. The wall clock time of CPU / GPU / TK1/ EIE for all
benchmarks are shown in Table IV.

EIE is targeting extremely latency-focused applications,
which require real-time inference. Since assembling a batch
adds significant amounts of latency, we consider the case
when batch size = 1 when benchmarking the performance
and energy efficiency with CPU and GPU as shown in
Figure 6. As a comparison, we also provided the result for
batch size = 64 in Table IV. EIE outperforms most of the
platforms and is comparable to desktop GPU in the batching
case.

The GOP/s required for EIE to achieve the same appli-
cation throughput (Frames/s) is much lower than competing
approaches because EIE exploits sparsity to eliminate 97%
of the GOP/s performed by dense approaches. 3 TOP/s on
an uncompressed network requires only 100 GOP/s on a
compressed network. EIE’s throughput is scalable to over
256 PEs. Without EIE’s dedicated logic, however, model
compression by itself applied on a CPU/GPU yields only
3⇥ speedup.

B. Energy

In Figure 7, we report the energy efficiency comparisons
of M⇥V on different benchmarks. There are 7 columns
for each benchmark, comparing the energy efficiency of
EIE on compressed network over CPU / GPU / TK1 on
uncompressed / compressed network. Energy is obtained by
multiplying computation time and total measured power as
described in section V.

EIE consumes on average, 24, 000⇥, 3, 400⇥, and
2, 700⇥ less energy compared to CPU, GPU and the mobile
GPU respectively. This is a 3-order of magnitude energy sav-
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FC Layer: Speedup on EIE
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Figure 6. Speedups of GPU, mobile GPU and EIE compared with CPU running uncompressed DNN model. There is no batching in all cases.
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Figure 7. Energy efficiency of GPU, mobile GPU and EIE compared with CPU running uncompressed DNN model. There is no batching in all cases.

corner. We placed and routed the PE using the Synopsys IC
compiler (ICC). We used Cacti [25] to get SRAM area and
energy numbers. We annotated the toggle rate from the RTL
simulation to the gate-level netlist, which was dumped to
switching activity interchange format (SAIF), and estimated
the power using Prime-Time PX.

Comparison Baseline. We compare EIE with three dif-
ferent off-the-shelf computing units: CPU, GPU and mobile
GPU.

1) CPU. We use Intel Core i-7 5930k CPU, a Haswell-E
class processor, that has been used in NVIDIA Digits Deep
Learning Dev Box as a CPU baseline. To run the benchmark
on CPU, we used MKL CBLAS GEMV to implement the
original dense model and MKL SPBLAS CSRMV for the
compressed sparse model. CPU socket and DRAM power
are as reported by the pcm-power utility provided by Intel.

2) GPU. We use NVIDIA GeForce GTX Titan X GPU,
a state-of-the-art GPU for deep learning as our baseline
using nvidia-smi utility to report the power. To run
the benchmark, we used cuBLAS GEMV to implement
the original dense layer. For the compressed sparse layer,
we stored the sparse matrix in in CSR format, and used
cuSPARSE CSRMV kernel, which is optimized for sparse
matrix-vector multiplication on GPUs.

3) Mobile GPU. We use NVIDIA Tegra K1 that has
192 CUDA cores as our mobile GPU baseline. We used
cuBLAS GEMV for the original dense model and cuS-
PARSE CSRMV for the compressed sparse model. Tegra K1
doesn’t have software interface to report power consumption,
so we measured the total power consumption with a power-
meter, then assumed 15% AC to DC conversion loss, 85%
regulator efficiency and 15% power consumed by peripheral
components [26], [27] to report the AP+DRAM power for
Tegra K1.

Benchmarks.
We compare the performance on two sets of models:

uncompressed DNN model and the compressed DNN model.

Table III
BENCHMARK FROM STATE-OF-THE-ART DNN MODELS

Layer Size Weight% Act% FLOP% Description

Alex-6 9216, 9% 35.1% 3% Compressed4096
AlexNet [1] forAlex-7 4096, 9% 35.3% 3% large scale image4096
classificationAlex-8 4096, 25% 37.5% 10%1000

VGG-6 25088, 4% 18.3% 1% Compressed4096 VGG-16 [3] for
VGG-7 4096, 4% 37.5% 2% large scale image4096 classification and
VGG-8 4096, 23% 41.1% 9% object detection1000

NT-We 4096, 10% 100% 10% Compressed
600 NeuralTalk [7]

NT-Wd 600, 11% 100% 11% with RNN and
8791 LSTM for

NTLSTM 1201, 10% 100% 11% automatic
2400 image captioning

The uncompressed DNN model is obtained from Caffe
model zoo [28] and NeuralTalk model zoo [7]; The com-
pressed DNN model is produced as described in [16], [23].
The benchmark networks have 9 layers in total obtained
from AlexNet, VGGNet, and NeuralTalk. We use the Image-
Net dataset [29] and the Caffe [28] deep learning framework
as golden model to verify the correctness of the hardware
design.

VI. EXPERIMENTAL RESULT

Figure 5 shows the layout (after place-and-route) of
an EIE processing element. The power/area breakdown is
shown in Table II. We brought the critical path delay down
to 1.15ns by introducing 4 pipeline stages to update one
activation: codebook lookup and address accumulation (in
parallel), output activation read and input activation multiply
(in parallel), shift and add, and output activation write. Ac-
tivation read and write access a local register and activation
bypassing is employed to avoid a pipeline hazard. Using
64 PEs running at 800MHz yields a performance of 102
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Figure 7. Energy efficiency of GPU, mobile GPU and EIE compared with CPU running uncompressed DNN model. There is no batching in all cases.

corner. We placed and routed the PE using the Synopsys IC
compiler (ICC). We used Cacti [25] to get SRAM area and
energy numbers. We annotated the toggle rate from the RTL
simulation to the gate-level netlist, which was dumped to
switching activity interchange format (SAIF), and estimated
the power using Prime-Time PX.

Comparison Baseline. We compare EIE with three dif-
ferent off-the-shelf computing units: CPU, GPU and mobile
GPU.

1) CPU. We use Intel Core i-7 5930k CPU, a Haswell-E
class processor, that has been used in NVIDIA Digits Deep
Learning Dev Box as a CPU baseline. To run the benchmark
on CPU, we used MKL CBLAS GEMV to implement the
original dense model and MKL SPBLAS CSRMV for the
compressed sparse model. CPU socket and DRAM power
are as reported by the pcm-power utility provided by Intel.

2) GPU. We use NVIDIA GeForce GTX Titan X GPU,
a state-of-the-art GPU for deep learning as our baseline
using nvidia-smi utility to report the power. To run
the benchmark, we used cuBLAS GEMV to implement
the original dense layer. For the compressed sparse layer,
we stored the sparse matrix in in CSR format, and used
cuSPARSE CSRMV kernel, which is optimized for sparse
matrix-vector multiplication on GPUs.

3) Mobile GPU. We use NVIDIA Tegra K1 that has
192 CUDA cores as our mobile GPU baseline. We used
cuBLAS GEMV for the original dense model and cuS-
PARSE CSRMV for the compressed sparse model. Tegra K1
doesn’t have software interface to report power consumption,
so we measured the total power consumption with a power-
meter, then assumed 15% AC to DC conversion loss, 85%
regulator efficiency and 15% power consumed by peripheral
components [26], [27] to report the AP+DRAM power for
Tegra K1.

Benchmarks.
We compare the performance on two sets of models:

uncompressed DNN model and the compressed DNN model.

Table III
BENCHMARK FROM STATE-OF-THE-ART DNN MODELS

Layer Size Weight% Act% FLOP% Description

Alex-6 9216, 9% 35.1% 3% Compressed4096
AlexNet [1] forAlex-7 4096, 9% 35.3% 3% large scale image4096
classificationAlex-8 4096, 25% 37.5% 10%1000

VGG-6 25088, 4% 18.3% 1% Compressed4096 VGG-16 [3] for
VGG-7 4096, 4% 37.5% 2% large scale image4096 classification and
VGG-8 4096, 23% 41.1% 9% object detection1000

NT-We 4096, 10% 100% 10% Compressed
600 NeuralTalk [7]

NT-Wd 600, 11% 100% 11% with RNN and
8791 LSTM for

NTLSTM 1201, 10% 100% 11% automatic
2400 image captioning

The uncompressed DNN model is obtained from Caffe
model zoo [28] and NeuralTalk model zoo [7]; The com-
pressed DNN model is produced as described in [16], [23].
The benchmark networks have 9 layers in total obtained
from AlexNet, VGGNet, and NeuralTalk. We use the Image-
Net dataset [29] and the Caffe [28] deep learning framework
as golden model to verify the correctness of the hardware
design.

VI. EXPERIMENTAL RESULT

Figure 5 shows the layout (after place-and-route) of
an EIE processing element. The power/area breakdown is
shown in Table II. We brought the critical path delay down
to 1.15ns by introducing 4 pipeline stages to update one
activation: codebook lookup and address accumulation (in
parallel), output activation read and input activation multiply
(in parallel), shift and add, and output activation write. Ac-
tivation read and write access a local register and activation
bypassing is employed to avoid a pipeline hazard. Using
64 PEs running at 800MHz yields a performance of 102
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Sparse Convolutional Accelerator



61

Blocking CNN Inference
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Sparse Convolution

• Only compute where both operands are nonzero
• 10-30x Reduction in work
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Sparse Convolution Engine
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Conclusion



Hardware and Data enable DNNs



Summary
• Hardware has enabled the current resurgence of DNNs

– And limits the size of today’s networks
• Inference

– Dynamically sparse activations x statically sparse weights
– 8b weights sufficient (can be compressed to 2-4b)
– Energy dominated by data movement and buffering
– Fixed-function hardware will dominate inference

• Training
– Only dynamic sparsity (3x activations, 2x dropout)
– Medium precision (FP16 – for weights)
– Large memory footprint (batch x retained activations) – can be 10s – 100s of GB
– Parallelism to 10PF today 100PF in near future (Communication BW)
– GPUs will dominate training
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4 Distinct Sub-problems
Training Inference
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