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Need for powerful models

● Very complicated tasks require many computational steps
● Not all tasks can be solved by feed-forward network due to 

limited computational power



More computation steps with the 
same number of parameters

● Reuse parameters extensively
● Few architectural choices: 

○ Neural GPU;
■ Developed by Keiser et al. 2015
■ Further work by Price et al. (Summer internship at 

OpenAI)
○ RNN with RL (large part of my PhD)
○ Grid LSTM (Kalchbrenner et. al 2015)



Neural GPU
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Neural GPU [Kaiser and Sutskever, 2015]

● The Neural GPU architecture learns arithmetic from examples.
● Feed in 60701242265267635090 + 40594590192222998643 

get out 00000000000000000000101295832457490633733
● Can generalize to longer examples

○ Train on up to 20-digit examples
○ Still gets > 99% of 200-digit examples right.
○ (If you get lucky on training) gets > 99% of 2000-digit examples right.



Neural GPU: architecture
● Alternates between two convolutional GRUs.
● If input has size n, does 2n total convolutions. [Need at least n to pass 

information from one side to the other]
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Neural GPU: details
● Each digit is embedded into 1 × 4 × F space, where F is the number of 

“filters”.
○ Input becomes n×4×F; convolution is 2D over the n×4.

● Start with 12 different sets of weights, anneal down to only 2.
● Start learning single digit examples, extend length when good accuracy is 

achieved (< 15% errors).
● The sigmoid in the GRU has a cutoff, i.e. can fully saturate.
● Dropout.



Neural GPU: Known Results

● Can we learn harder tasks?
○ What can we learn with bigger models?
○ What can we learn with smarter training?



Bigger models

● NeuralGPU barely fits into memory

● Bigger models require storing intermediate activations on CPU 
(tf.while_loop with swap memory options)

● Difficult to determine success due to huge non-determinism
○ Run large pool of experiments (once, we almost spent 

$0.5mln on them)
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How to do smarter training ? 

● Extensive Curriculum
○ Curriculum through length (people used to do it)
○ Transfer from addition to multiplication doesn’t work
○ Transfer from small base to large seems to work



Bigger models and curriculum



Bigger models and curriculum



Bigger models and curriculum



Bigger models and curriculum



Issues with neural GPU

● Trained on random inputs, it works reliably only on random 
inputs.
○ When doing addition, it cannot carry many bits.
○ Has issues with long stretches of similar digits.



Issues with carries
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Issues with long similar stretches
● What is 

59353073470806611971398236195285989083458222209939343360871730
649133714199298764 × 
71493004928584356509100241005385920385829595055047086568280792
309308597157524754?

○ 42433295741750065286239285723032711230235516272….12542569152450984215719024952771604056

● What is 2×1?
○ 002

● What is 0000...0002 × 0000...0001
○ 0…..00176666666668850…..007

● What is 0000...0002 × 0000...0002
○ 0…..00176666666668850…..014



RNN with RL





Video

https://www.youtube.com/watch?v=GVe6kfJnRAw&feature=youtu.be 

https://www.youtube.com/watch?v=GVe6kfJnRAw&feature=youtu.be
https://www.youtube.com/watch?v=GVe6kfJnRAw&feature=youtu.be


Q-learning

● Reward of 1 for every correct prediction, and 
0 otherwise. 

● Model trained with Q-learning
● Q(s, a) estimates sum of the future rewards 

for an action “a” in a state “s”.
● Q is the off-policy algorithm (remarkable) 



Q-learning as off-policy

● Policy induced by Q is the argmax_a Q(s, a)
● When we follow induced policy, we say that 

we are on-policy
● When we follow a different policy, we say 

that we are off-policy
● Q converges to Q for the optimal policy 

regardless of policy that we follow (as long 
as we can visit every state-action pair) !!!



Watkins Q(lambda)[11]

● Typical policy is a combination of on-policy 
(95%) with a random uniform policy (5%). 

● Most of the time, we are on-policy
● This allows to regress Q on the other 

estimate:

[11] “Reinforcement learning: An introduction” Sutton and Barto



Dynamic Discount

● In Q-learning, the model has to predict the 
sum of future rewards.

● However, the length of the episode might 
vary. 

● We reparametrize Q, so it estimates the sum 
of future rewards divided by number of 
predictions left: 



Curriculum[4]

● Three row addition was unsolvable in the 
original form

● We start with small numbers that do not 
require carry.

[4] "Curriculum learning.", Bengio et al. 





Reinforce[12]

Objective of Reinforce: 

we access it through sampling: 

[12] “Simple statistical gradient-following algorithms for connectionist reinforcement learning”, Williams



Reinforce
Derivative:

we access it through sampling: 



Training

● Trained with SGD

● Curriculum learning is critical

● Not easy to train (due to variance coming 
from sampling)
○ Various techniques to decrease variance[13]

[13] “Policy Gradient Methods for Robotics” Peters and Schaal





Task - DuplicatedInput



Task - Reverse



Task - RepeatCopy



Memory interface

● Memory is a tape with 3 actions, go to the 
left, stay, go to the right

● Controller always reads from the previous 
memory location, and always saves to the 
next memory location

● It stores a high dimensional vector through 
which we backpropagate 



Task - Reverse with memory



Task. RepeatCopy with memory. Failure



Gradient Checking - motivation

● Very simple to make a mistake in the 
implementation

● How to verify a stochastic algorithm? 



Gradient Checking for Reinforce
● We could sample actions many times and 

compare the average gradient to average of 
the numerical gradient.



Gradient Checking for Reinforce
● We could sample actions many times and 

compare the average gradient to average of 
the numerical gradient.

● Impractical. To get good precision we would 
need millions of samples.







Gradient Checking for Reinforce
● It was critical to make the model work. 
● We can limit the size of the action space 

during gradient checking
● Gradient checking takes seconds



Q&A
● NeuralGPU
● Bigger -> better
● Curriculum
● Adversarial examples for NeuralGPU
● Q-learning

○ Dynamic discount
○ Watkins Q(lambda)

● Reinforce
● Memory
● Gradient checking

Thanks to Eric Price, Ilya Sutskever and Rob Fergus


