Deep Learning Gets Way Deeper Recent Advances of Deep Learning for Computer Vision

Kaiming He

Research Scientist

Facebook AI Research (FAIR)

Overview

- Introduction
 - Look at some recent progress of deep learning for computer vision

- From Shallow Models to 100+ Layers
 - Advances and challenges of getting way deeper
- From Classification to Detection
 - Deep learning for complex recognition applications

Introduction

- ReLU
- End-to-end (no pre-training)
- **Data augmentation**

AlexNet, 8 layers (ILSVRC 2012)

VGG, 19 layers (ILSVRC 2014) ResNet, 152 layers (ILSVRC 2015)

ResNet, 152 layers

*w/ other improvements & more data

ResNets @ ILSVRC & COCO 2015 Competitions

• 1st places in all five main tracks

- ImageNet Classification: "Ultra-deep" 152-layer nets
- ImageNet Detection: 16% better than 2nd
- ImageNet Localization: 27% better than 2nd
- COCO Detection: 11% better than 2nd
- COCO Segmentation: 12% better than 2nd

*improvements are relative numbers

ResNet's object detection result on COCO

*the original image is from the COCO dataset

Background

From shallow to deep

Traditional recognition

But what's next?

Deep Learning

Specialized components

- End-to-end learning
- Richer solution space
- Minimal domain knowledge

Deep Learning is "Easy"

- Minimal domain knowledge
- Data driven
- Features are generalizable

Deep Learning is "Hard"

- Black boxes?
- Unstable (vanishing/exploding)?
- Hard to tune hyper-parameters?

Cheat Sheet of Going Deeper

If:

- Linear activation
- *x*, *y*, *w*: independent Then:

1-layer: $Var[y] = (n^{in}Var[w])Var[x]$ Multi-layer: $Var[y] = (\prod_{d} n_{d}^{in}Var[w_{d}])Var[x]$

LeCun et al 1998 "Efficient Backprop"

Glorot & Bengio 2010 "Understanding the difficulty of training deep feedforward neural networks"

Both forward (response) and backward (gradient) signal can vanish/explode

Forward:

LeCun et al 1998 "Efficient Backprop"

Glorot & Bengio 2010 "Understanding the difficulty of training deep feedforward neural networks"

• Initialization under linear assumption

 $\prod_{d} n_{d}^{in} Var[w_{d}] = const_{fw} \text{ (healthy forward)}$ and $\prod_{d} n_{d}^{out} Var[w_{d}] = const_{bw} \text{(healthy backward)}$

$$\begin{array}{c|c} n_d^{in} Var[w_d] = 1 \\ or^* \\ n_d^{out} Var[w_d] = 1 \end{array} \end{array} \qquad \begin{array}{c} *: n_d^{out} = n_{d+1}^{in}, \text{ so } \frac{const_{bw}}{const_{fw}} = \frac{n_{last}^{out}}{n_{first}^{in}} < \infty. \end{array}$$

$$\begin{array}{c} \text{It is sufficient to use either form.} \end{array}$$

"Xavier" init in Caffe

LeCun et al 1998 "Efficient Backprop"

Glorot & Bengio 2010 "Understanding the difficulty of training deep feedforward neural networks"

Initialization under ReLU

$$\Pi_{d} \frac{1}{2} n_{d}^{in} Var[w_{d}] = const_{fw} \text{ (healthy forward)}$$

and
$$\Pi_{d} \frac{1}{2} n_{d}^{out} Var[w_{d}] = const_{bw} \text{(healthy backward)}$$

$$\Rightarrow \begin{bmatrix} \frac{1}{2}n_d^{in}Var[w_d] = 1 \\ \text{or} \\ \frac{1}{2}n_d^{out}Var[w_d] = 1 \end{bmatrix} \qquad \text{W}$$
ex

With *D* layers, a factor of 2 per layer has exponential impact of 2^D

______ "MSRA" init in Caffe

Kaiming He, Xiangyu Zhang, Shaoqing Ren, & Jian Sun. "Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification". ICCV 2015.

22-layer ReLU net: good init converges faster 30-layer ReLU net: good init is able to converge

*Figures show the beginning of training

Kaiming He, Xiangyu Zhang, Shaoqing Ren, & Jian Sun. "Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification". ICCV 2015.

- Normalizing input (LeCun et al 1998 "Efficient Backprop")
- BN: normalizing each layer, for each mini-batch
- Greatly accelerate training
- Less sensitive to initialization
- Improve regularization

- μ : mean of x in mini-batch
- σ : std of x in mini-batch
- γ : scale
- β : shift

- μ, σ: functions of x, analogous to responses
- γ , β : parameters to be learned, analogous to weights

- 2 modes of BN:
- Train mode:
 - μ , σ are functions of x; backprop gradients
- Test mode:
 - μ , σ are pre-computed* on training set

Caution: make sure your BN usage is correct

*: by running average, or post-processing after training

Deep Residual Networks

From 10 layers to 100+ layers

Simply stacking layers?

- Plain nets: stacking 3x3 conv layers...
- 56-layer net has higher training error and test error than 20-layer net

Simply stacking layers?

- "Overly deep" plain nets have higher training error
- A general phenomenon, observed in many datasets

a deeper counterpart (34 layers)

- Richer solution space
- A deeper model should not have higher training error
- A solution *by construction*:
 - original layers: copied from a learned shallower model
 - extra layers: set as identity
 - at least the same training error
- Optimization difficulties: solvers cannot find the solution when going deeper...

Deep Residual Learning

• Plaint net

H(x) is any desired mapping,

hope the 2 weight layers fit H(x)

Deep Residual Learning

Residual net

H(x) is any desired mapping, hope the 2 weight layers fit H(x)hope the 2 weight layers fit F(x)let H(x) = F(x) + x

Deep Residual Learning

• F(x) is a residual mapping w.r.t. identity

- If identity were optimal, easy to set weights as 0
- If optimal mapping is closer to identity, easier to find small fluctuations

Related Works – Residual Representations

- VLAD & Fisher Vector [Jegou et al 2010], [Perronnin et al 2007]
 - Encoding residual vectors; powerful shallower representations.
- Product Quantization (IVF-ADC) [Jegou et al 2011]
 - Quantizing residual vectors; efficient nearest-neighbor search.
- MultiGrid & Hierarchical Precondition [Briggs, et al 2000], [Szeliski 1990, 2006]
 - Solving residual sub-problems; efficient PDE solvers.

Network "Design"

- Keep it simple
- Our basic design (VGG-style)
 - all 3x3 conv (almost)
 - spatial size /2 => # filters x2 (~same complexity per layer)
 - Simple design; just deep!
- Other remarks:
 - no hidden fc
 - no dropout

7x7 conv, 64, /2 7x7 conv, 64, /2 pool, /2 pool, /2 3x3 conv, 64 3x3 conv, 64 3x3 conv, 64 3x3 conv, 64 ¥ 3x3 conv, 64 3x3 conv, 64 plain net ResNet ▼ 3x3 conv. 64 3x3 conv, 128, /2 3x3 conv, 128, /2 3x3 conv, 128 3x3 conv, 256, /2 3x3 conv, 256, /2 3x3 conv, 256 3x3 conv, 512, /2 3x3 conv, 512, /2 3x3 conv, 512 3x3 conv. 512 3x3 conv. 512 3x3 conv, 512 3x3 conv, 512 avg pool avg pool fc 1000 fc 1000

Training

- All plain/residual nets are trained from scratch
- All plain/residual nets use Batch Normalization
- Standard hyper-parameters & augmentation

CIFAR-10 experiments

- Deep ResNets can be trained without difficulties
- Deeper ResNets have lower training error, and also lower test error
ImageNet experiments

- Deep ResNets can be trained without difficulties
- Deeper ResNets have lower training error, and also lower test error

ImageNet experiments

• A practical design of going deeper

ImageNet experiments

On the Importance of Identity Mapping

A Deeper Look at ResNets

On identity mappings for **optimization**

• shortcut mapping: *h* = identity

On identity mappings for **optimization**

- shortcut mapping: *h* = identity
- after-add mapping: f = ReLU

On identity mappings for **optimization**

- shortcut mapping: *h* = identity
- after-add mapping: f = ReLU

$$x_{l+1} = x_l + F(x_l)$$

$$x_{l+2} = x_{l+1} + F(x_{l+1})$$

$$x_{l+2} = x_l + F(x_l) + F(x_{l+1})$$

$$x_L = x_l + \sum_{i=l}^{L-1} F(x_i)$$

- Any x_l is directly forward-prop to any x_L, plus residual.
- Any x_L is an additive outcome.
 - in contrast to multiplicative: $x_L = \prod_{i=l}^{L-1} W_i x_l$

Kaiming He, Xiangyu Zhang, Shaoqing Ren, & Jian Sun. "Identity Mappings in Deep Rentification of the second s

7x7 conv, 64, /2

Very smooth backward propagation

$$\frac{\partial E}{\partial x_l} = \frac{\partial E}{\partial x_L} \left(1 + \frac{\partial}{\partial x_l} \sum_{i=1}^{L-1} F(x_i)\right)$$

- Any $\frac{\partial E}{\partial x_L}$ is directly back-prop to any $\frac{\partial E}{\partial x_l}$, plus residual.
- Any $\frac{\partial E}{\partial x_l}$ is additive; unlikely to vanish
 - in contrast to multiplicative: $\frac{\partial E}{\partial x_l} = \prod_{i=l}^{L-1} W_i \frac{\partial E}{\partial x_L}$

Kaiming He, Xiangyu Zhang, Shaoqing Ren, & Jian Sun. "Identity Mappings in Deep Rentification of the second s

Residual for every layer

forward:
$$x_L = x_l + \sum_{i=l}^{L-1} F(x_i)$$

backward: $\frac{\partial E}{\partial x_l} = \frac{\partial E}{\partial x_L} (1 + \frac{\partial}{\partial x_l} \sum_{i=1}^{L-1} F(x_i))$
Enabled by:
• shortcut
• after-add

Kaiming He, Xiangyu Zhang, Shaoqing Ren, & Jian Sun. "Identity Mappings in Deep Residual Networks". ECCV 2016.

shortcut mapping: h = identity

after-add mapping: *f* = identity

original ResNet pre-activation ResNet

1001-layer ResNets on CIFAR-10

$$f = \text{ReLU}$$
 $f = \text{identity}$

- ReLU could also block prop when there are 1000 layers
- pre-activation design eases optimization (and improves generalization; see paper)

Comparisons on CIFAR-10/100

CIFAR-10

CIFAR-100

method	error (%)	method	error (%)
NIN	8.81	— NIN	35.68
DSN	8.22	DSN	34.57
FitNet	8.39	FitNet	35.04
Highway	7.72	Highway	32.39
ResNet-110 (1.7M)	6.61	ResNet-164 (1.7M)	25.16
ResNet-1202 (19.4M)	7.93	ResNet-1001 (10.2M)	27.82
ResNet-164, pre-activation (1.7M)	5.46	ResNet-164, pre-activation (1.7M)	24.33
ResNet-1001, pre-activation (10.2M)	4.92 (4.89±0.14)	ResNet-1001, pre-activation (10.2M)	22.71 (22.68±0.22)

*all based on moderate augmentation

ImageNet Experiments

ImageNet single-crop (320x320) val error

method	data augmentation	top-1 error (%)	top-5 error (%)
ResNet-152, original	scale	21.3	5.5
ResNet-152, pre-activation	scale	21.1	5.5
ResNet-200, original	scale	21.8	6.0
ResNet-200, pre-activation	scale	20.7	5.3
ResNet-200, pre-activation	scale + aspect ratio	20.1 *	4.8 *

*<u>https://github.com/facebook/fb.resnet.torch/tree/master/pretrained#notes</u> training code and models available.

From Classification to Detection

"Features matter"

"Features matter." (quote [Girshick et al. 2014], the R-CNN paper)

task	2nd-place winner	ResNets	margin (relative)
ImageNet Localization (top-5 error)	12.0	9.0	27%
ImageNet Detection (mAP@.5)	53.6 abs	better!	16%
COCO Detection (mAP@.5:.95)	33.5	37.3	11%
COCO Segmentation (mAP@.5:.95)	25.1	28.2	12%

- Our results are all based on ResNet-101
- Deeper features are well transferrable

*w/ other improvements & more data

Deep Learning for Computer Vision

Example: Object Detection

Image Classification (what?)

Object Detection (what + where?)

Object Detection: R-CNN

figure credit: R. Girshick et al.

Region-based **CNN** pipeline

Girshick, Donahue, Darrell, Malik. Rich Feature Hierarchies for Accurate Object Detection and Semantic Segmentation. CVPR 2014

Object Detection: R-CNN

• R-CNN

Girshick, Donahue, Darrell, Malik. Rich Feature Hierarchies for Accurate Object Detection and Semantic Segmentation. CVPR 2014

Object Detection: Fast R-CNN

• Fast R-CNN

Girshick. Fast R-CNN. ICCV 2015

Object Detection: Faster R-CNN

- Faster R-CNN
 - Solely based on CNN
 - No external modules
 - Each step is end-to-end

Object Detection

Object Detection

• Simply "Faster R-CNN + ResNet"

Faster R-CNN baseline	mAP@.5	mAP@.5:.95
VGG-16	41.5	21.5
ResNet-101	48.4	27.2

COCO detection results ResNet-101 has 28% relative gain vs VGG-16

Kaiming He, Xiangyu Zhang, Shaoqing Ren, & Jian Sun. "Deep Residual Learning for Image Recognition". CVPR 2016.

Object Detection

- RPN learns proposals by extremely deep nets
 - We use only 300 proposals (no hand-designed proposals)

• Add components:

- Iterative localization
- Context modeling
- Multi-scale testing
- All components are based on CNN features; all steps are end-to-end
- All benefit more from deeper features cumulative gains!

Kaiming He, Xiangyu Zhang, Shaoqing Ren, & Jian Sun. "Deep Residual Learning for Image Recognition". CVPR 2016. Shaoqing Ren, Kaiming He, Ross Girshick, & Jian Sun. "Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks". NIPS 2015.

ResNet's object detection result on COCO

*the original image is from the COCO dataset

Kaiming He, Xiangyu Zhang, Shaoqing Ren, & Jian Sun. "Deep Residual Learning for Image Recognition". arXiv 2015.

^{*}the original image is from the COCO dataset

Kaiming He, Xiangyu Zhang, Shaoqing Ren, & Jian Sun. "Deep Residual Learning for Image Recognition". arXiv 2015.

*the original image is from the COCO dataset

Kaiming He, Xiangyu Zhang, Shaoqing Ren, & Jian Sun. "Deep Residual Learning for Image Recognition". arXiv 2015.

Results on real video. Models trained on MS COCO (80 categories). (frame-by-frame; no temporal processing)

Kaiming He, Xiangyu Zhang, Shaoqing Ren, & Jian Sun. "Deep Residual Learning for Image Recognition". arXiv 2015. Shaoqing Ren, Kaiming He, Ross Girshick, & Jian Sun. "Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks". NIPS 2015.

More Visual Recognition Tasks

ResNet-based methods lead on these benchmarks (incomplete list):

- ImageNet classification, detection, localization
- MS COCO detection, segmentation
- PASCAL VOC detection, segmentation
- Visual Question Answering Challenge 2016
- Human pose estimation [Newell et al 2016]
- Depth estimation [Laina et al 2016]

...

• Segment proposal [Pinheiro et al 2016]

		mean	plane	Dicycle	biru	Duar	Dottie	045	cai	
		-	\bigtriangledown	∇						
►	DeepLabv2-CRF [?]	79.7	92.6	60.4	91.6	63.4	76.3	95.0	88.4	92
\triangleright	CASIA_SegResNet_CRF_COCO [?]	79.3	93.8	R	es		et	95.	8	1
\triangleright	Adelaide_VeryDeep_FCN_VOC [?]	79.1	91.9	48.1	93.4	69.3	75.5	94.2	87.5	92
\triangleright	LRR_4x_COCO ⁽¹⁾	/0./	93.2	44.2	09.4	05.4	74.9	95.9	87.0	94
\triangleright	CASIA_IVA_OASeg ^[?]	78.3	93.8	41.9	89.4	67.5	71.5	94.6	85.3	89
\triangleright	Oxford_TVG_HO_CRF [?]	77.9	92.5	59.1	90.3	70.6	74.4	92.4	84.1	88
	Adelaide Context CNN CRF COCO [?]	77.8	92.9	39.6	84.0	67.9	75.3	92.7	83.8	

PASCAL segmentation leaderboard

Faster RCNN, ResNet (VOC+COCO) [7] 83.8 92.1 88.4 84 R75.9 714 86.3 87.8 1 R-FCN, ResNet (VOC+COCO) [7] 82.0 89.5 88.3 83 83 83 85 65.3 1 OHEM+FRCN, VGG16, VOC+COCO [7] 80.1 30.1 30.1 30.1 30.1 30.5 60.1 30.5 80.3	$\checkmark \ \ \nabla \ \ $
Faster RCNN, ResNet (VOC+COCO) [?] 83.8 92.1 88.4 84 875.9 714 86.3 87.8 1 R-FCN, ResNet (VOC+COCO) [?] 82.0 89.5 88.3 83 83 83.8 92.1 88.4 84 84 87.8 1	
R-FCN, ResNet (VOC+COCO) [7] 82.0 89.5 88.3 83 SA 65.3 L UHEM+FRCN, VGG16, VOC+COCO 00.1 00.1 50.1 60.1 75.5 60.5 60.1 57.1 20.1 27.1 27.1 27.1 27	OCO) ^[7] 83.8 92.1 88.4 84.0 75.9 74 86.3 87.8 44.7
UHEM+FRCN, VGG15, VOC+COCO (7) 00.1 01.4 15.3 05.0 00.1 02.1	[7] 82.0 89.5 88.3 83 .7.8 St.N.8 6.3 L.U .
	OCO (1) 00.1 00.1 07.4 75.5 05.0 00.5 00.1 05.0 52.5
▷ SSD500 VGG16 VOC + COCO [?] 78.7 89.1 85.7 78.9 63.3 57.0 85.3 84.1 92	[?] 78.7 89.1 85.7 78.9 63.3 57.0 <mark>85.3</mark> 84.1 92.3
▷ HFM_VGG16 ^[7] 77.5 88.8 85.1 76.8 64.8 61.4 85.0 84.1 90	77.5 88.8 85.1 76.8 64.8 61.4 <mark>85.0</mark> 84.1 90.0
▷ IFRN_07+12 ^[?] 76.6 87.8 83.9 79.0 64.5 58.9 82.2 82.0 91	
▷ ION [?] 76.4 87.5 84.7 76.8 63.8 58.3 82.6 79.0 90	76.6 87.8 83.9 79.0 64.5 58.9 82.2 82.0 91.4

PASCAL detection leaderboard
More Applications

ResNets have shown outstanding or promising results on: Visual Recognition

Image Generation (Pixel RNN, Neural Art, etc.)

Natural Language Processing (Very deep CNN)

Speech Recognition

Advertising, user prediction

Resources

- Models and Code
 - <u>https://github.com/KaimingHe/deep-residual-networks</u>
- Many available implementations

(see https://github.com/KaimingHe/deep-residual-networks)

- Facebook AI Research's Torch ResNet: <u>https://github.com/facebook/fb.resnet.torch</u>
- Torch, CIFAR-10, with ResNet-20 to ResNet-110, training code, and curves: code
- Lasagne, CIFAR-10, with ResNet-32 and ResNet-56 and training code: code
- Neon, CIFAR-10, with pre-trained ResNet-32 to ResNet-110 models, training code, and curves: code
- Torch, MNIST, 100 layers: blog, code
- A winning entry in Kaggle's right whale recognition challenge: blog, code
- Neon, Place2 (mini), 40 layers: blog, code
- •

Kaiming He, Xiangyu Zhang, Shaoqing Ren, & Jian Sun. "Deep Residual Learning for Image Recognition". CVPR 2016. Kaiming He, Xiangyu Zhang, Shaoqing Ren, & Jian Sun. "Identity Mappings in Deep Residual Networks". ECCV 2016.

References

Classification

- "ImageNet Classification with Deep Convolutional Neural Networks", Krizhevsky et al. NIPS 2012
- "Visualizing and Understanding Convolutional Networks", Zeiler & Fergus. ECCV 2014
- "Very Deep Convolutional Networks for Large-Scale Image Recognition", Simonyan & Zisserman. ICLR 2015
- "Going deeper with convolutions", Szegedy et al. CVPR 2015
- "Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift", Szegedy et al. ICML 2015
- "Deep Residual Learning for Image Recognition", He et al. CVPR 2016

Detection

- "Rich feature hierarchies for accurate object detection and semantic segmentation", Girshick et al. CVPR 2014
- "Spatial Pyramid Pooling in Deep Convolutional Networks for Visual Recognition", He et al. ECCV 2014
- "Fast R-CNN", Girshick. ICCV 2015
- "Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks", Ren et al. NIPS 2015

Segmentation

- "Fully Convolutional Networks for Semantic Segmentation", Long et al. CVPR 2015
- "Learning to Segment Object Candidates", Pinhero et al. NIPS 2015

Language

- "Long-term Recurrent Convolutional Networks for Visual Recognition and Description", Donahue et al. CVPR 2015
- "Deep visual-semantic alignments for generating image descriptions", Karpathy & Fei-Fei. CVPR 2015

Super-Resolution

• "Learning a Deep Convolutional Network for Image Super-Resolution", Dong et al. ECCV 2014

Neural Art

• "A Neural Algorithm of Artistic Style", Gatys et al. CVPR 2016

Generative models

• "Generative Adversarial Nets", Goodfellow et al. NIPS 2015